AD=A119 438

UNCLASSIFIED

STANFORD UNIV CA DEPT OF COMPUTER $CIENCE T rse tary

COMBINATORIAL ALGORITHNS I.(U)

MAY 82 £ W MAYR

STAN=CS=82=907

: =

NOOO14=81=K=0330
. NL

May 1982

Report. No. ST AN‘CS~82~907

J

-
{
€pa ftmeng of Computer Science N
P
Stanforg University LS
Stanford, CA 94305

e ———

s v e e i e Lt e

Stanford University
Department of Computer Science

Combinatorial Algorithms |

by

Emst W. Mayr

‘This report is an edited collection of the class notes prepared for Course 253 A of the samg title. The
course was taught at the Dopartment of Computer Science at Stanford University in the Winter Quarter
1982. The author wishes to thank the students who took part in that course for their interest which in
turn provided much of the motivation to prcpare this report, and in particular Tom Spencer, who acted
as TA for the course and who helped a lot to make these notes look the way they do,

The publication of this report was supported in part by National Science Foundation grant MCS-
77-23738 and by Office of Naval Research contract N00014-81-K~0330.

¥

May 1982 L el
o ~

|
!
!
|

‘l.{‘!

TABLE OF CONTENTS

L INTRODUCTION i ittt it ii i taannte s annaneanonennn e 1
1.1, Combinatorial AIgOrithmsSt ittt ittt titnsennsanssaneans 1
12. MachineModelsciiitt i, e 1
1.3 Complexity Measures v ot i n it et oo s o s toonstenanionssoennases 3
1.3.1. Complexity Functions ittt ittt insassosassaeesonnon 3
1.3.2. Asymptotic Complexityttt ittt 4

1.4. Reduction and Recurrences e h et e e ettt e e 5
LAl MUltipliers i ittt ittt ittt ittt ne e tinee e et sn s e aanenans b
1.4.2. Characteristic Polynomials e e 6
14.3. Generating Functions ¢t tivttornuonenaetnoessooesonnsns 7
1.44. Domain and Range Transformationso ottt i ettt iie e 8

2. HIGHER LEVEL DATA STRUCTURES i i it it i e 9
2.]1. Basic Set Operations . . . v v v v it v aee i ettt e et e 9
22. Binomial Queues . .:............... e ettt et e e 10
22) Definitions v vttt i e e e et e ce... 10
Ry R 6 o T 11
223 INSEItiON ittt it e e et e e 11
. T, 11
P T 0 110 Y 11

3. SELECTION - THE MEDIAN PROBLEM ittt ittt e titnnnennannn 13
3.1. The Blum-Floyd-Pratt-Rivest-Tarjan Selection Algorithm 13
3.2. The Schonhage-Paterson-Pippenger Median Algorithm 14
3.3. A Lower Bound for the Median Problem ot 17
34 References ittt i e e e e e s 19
4. MINIMUM SPANNING TREES ittt ittt ittt naerenaans 20
4.1. A Schema for Minimum Spanning Tree Algorithms 20
42. Kruskal's Algorithm ittt it s ettt it et e nas e e 21
4.3. A Better Minimum Spanning Tree Algorithm 21
5. PATH COMPRESSION it ittt it et ittt e 24
5. The UNION-FIND Problem00ttt ittt eninsenn 24
5.2. The Weighting Heuristic. ettt ittt et e e e 24
5.3. The Path Compression Heuristic 0 ittt innnnan 25
5.4. Upper Bounds for UNION-FIND with Path Compression 25
5.4.1. Path Compression without Weighting Heuristic, 26
5.4.2. Path Compression and Weighted UNION oL, 26

6. PATTERN MATCHING INSTRINGSttt ittt et eie e 28
6.1. Pattern Matching Problems, ... it ittt iit ey L 28
6.2. Scts of Patterns Given by Regular Expressions o ... 0 ittt i 28
6.3. Automata Recognizing Substringsttt ittt ittt et 29
6.4. The Knuth-Morris-Pratt Pattern Matching Algorithm 30
6.5. The Boyer-Moore String Matching Algorithm ity)1
6.6. Space Efficient Lincar Pattern Matching it 32
6.7, PoSilion TrCest ittt it ittt ettt i e 35

i

7. SEARCHING GRAPHS AND APPLICATIONS B 36
7.1. The Labelling OF TreeS . . « < o v v v 'v e oot e oot ettt ineeoneenneeneenneas 36 :
T2 Search in Graphs i ittt ittt est i it tanenenereenseeneneennas 37
T3 Connectivityottt i i e e ettt et 33
T3 BiCONNECtIVILYttt ittt i et ettt e et e 38
7.3.2. Strongly Connected COMPONENtSt vv ittt ittt tnnrneenensnnenens 41
74 Planarity Testing« . vt v ittt ittt eneenenacenananes e e 42
TA4L Planar Graphs oo ittt i s s e e e et e e 42
7.4.2. The Hopcroft-Tarjan Planarity Testing Algorithm 45
7.5. Shortest Path Problems i ittt it te ittt 49
7.5.1. Dijkstra’s Single Source Algorithm 49
7.5.2. The All Pairs Shortest Paths Problem v rinn.. 50
7.5.3. Min-Plus Transitive Closurettt et ernensnns 51
7.5.4. Boolean Matrix Multiplication, Transitive Closure, 52
1.5.5. The Four Russians’ Algorithm for Boolcan Matrix Multiplicatior 53
T ReferenCest i i it e e e e e 54
8. MAXIMUM MATCHINGS INGRAPHS, 55
8.1 Fundamentals ittt e e e, 55
8.2. Maximum Matchings in Bipartite Graphs e e 58
8.3. Maximum Cardinality Matching in General Graphs., 60
8.4. Maximum Weight Matching Problems e, .. 60
9. MAXIMUM FLOW INNETWORKSttt 62
9.1 Flows and Cuts, . ittt ittt ittt ettt ittt ettt e 62
9.2. The Dinits Algorithm , ittt ittt et et eee e e eeeenn 64
9.3. The Mathotra-Pramodh Kumar-Maheshwari Algorlthm 66 -
9.4.. Extensions and Restrictionst iv et ninne e eeeennnneens 67
9.5, APPICAtIONS it i i e i e e e e e e 67 -
10. PROBLEMS . . . it ittt ettt ettt e e e 69
IL REFERENCESc... ittt ittt PO 76 4
H
i
}

C e - - Jg

L2 7Y

Chapter 1

X -~ Introduction

1.1. Combinatorial Algorithms.

The title of this course is “Combinatorial Algorithms”. In order to get some idea of what this means,
let's look at the two words in turn (and remember this is not supposed to give a formal, mathematical
definition): .

- to explain “algorithm” it should actually suffice for all our present purposes if we take it as referring
to a “correct computer program (in, say, Pascal or Lisp) guaranteed to terminate on all inputs”, or, to
be less idealistic, on al! allowed inputs (but then of course the probiem arises which inputs are allowed,
and how do we distinguish themf). .

- the semantics of “combinatorial” is harder to describe. Classical combinatorics is the science of the
properties of finite collections of discrete objects. Of course, the objects might be anything (like
superdenumerable ordinals), but from a combinatiorial point of view we are only interested in certain
discrete and finitarily rcpresented properties.

If that is all, you might correctly remark that the word “combinatorial” in “combinatorial algorithms”
is simply redundant because (digital) computers on which algorithms supposedly are executed are definitely
finitary and discrete.

Hence there must be a more traditional meaning which distinguishes combinatorial algorithms from
algorithms in general. Let me try to put this necessarily vague notion perhaps as follows:

“Combinatorial algorithms are those dealing with problems which would be more
or less trivial if one could inspect all possible combinations of the (discrete) objects
of any given problem instance.”
- Of course, this is a very indirect explanation of what a combinatorial algorithm might be, but it has
one definite merit to it: it highlights the fact that for all the problems we shall be concerned with we will
have to search for solutions other and better than caumerative ones.

1.2. Machine Models.

We now want to take a somewhat closcr look at the computer model which we shall have in mind
in most of the cases, or at least in the back of our mind. The reason is that if we intend to make
formal (mathematical) statements about computers and the programs running on them we also have to
give formal definitions of what computers and programs are. For our purposcs, however, it suffices to
obtain some rough idea, knowing that when needed there would be a whole claborated theory to rely on
and supply all thc missing dctails.

Thus, our machinc mode] which is called a Random Access Machine (RAM), could be considercd as
abstracted from an (almost real) computer built, say, at the beginning of the sixties: input and output

o R

¥
-
.

X

T g

2 1. INTRODUCTION

would be solely via pui\chcd paper tape, program storage would be read-only (quite modern agaii\), and .
there would be just onec register serving as accumulator.
A more formal diagram would look like

. read head

input tape hid oo %
me Accumulator
program
.m
= finitc state |
me R/W memoty
control memory
xc& : .
control :
output tape -> 1

\ punch head

— Diagram of RAM —

We idcalistically assume that there arc infinitcly many memory cclls mg, m,, ... , and that cach of
them can hold an arbitrary (signed) integer. (It seems necessary to remark here that more and more often
these two assumptions do appear as idcalistic; certainly it is possible to discard the second assumption (as
even the definitions of some new programming languages do) and simulate arbitrary size integers without
(at least theorctically) undue loss of cfficiency, but also disposing of the first would just lcave us with
finite automata). The program or finite state control of a RAM very much looks like asscmbly language
with onec address instructions allowing:

- direct, immediate, and indirect addressing for memory transfer and the basic arithmetic and logical

- conditional and unconditional branching,

1.3. COMPLEXITY MEASURES. _ 3

- input and output, and one or a few control statements (like STOP).

We do not specify any more dctails because we expect that we will never have to use this rather
awkward machine language, and assume that instead have a very sophisticated compiler from a high level
Algol60- or Pascal-like language which even allows us some statements in natural English. This will make
the presentation of algorithms closer to our way of thinking and (hopcfully) easier to understand. But
when analyzing the execution of such programs on a RAM we always have to think of the compiled
version as being cxecuted.

1.3. Complexity Measures.

Now that we have presented the basic features of our formal model we want to see how to use it.
Well, we would like to employ algorithms and computers in order to get solutions for problems in which
we are interested and from which we expect a profit in some sense. Pursuing this economical setup a
little bit further, computers are scarce resources, and we incur some costs using them. And, naturally, we
are interested in minimizing these costs.

As in economics, we have to clarify two questions first:

(1) how is the cost of running a specific algorithm un a specific (model »f a) computer defined, i.e., how
do we measure cost?
(2) given two solutions to a problem, how do we compare their respective costs?

1.3.1. Complexity Functions.

Most of the algorithms we shall be looking at are able to solve not only one instance.of 2 problem
(say, determining whether the 10,07 st digit of the decimal expansion of = is 5), but normally (at least on
our idealized computer mode), the RAM) an infinite number of such instances (in the above example:
finding out whether the n-th digit of the decimal expansion of = is 5, for any positive integer n given
to the algorithm). And actually it is just such an infinite collection of instances (given by means of some
gencral parametcrization of by a defining cormamon property) what we mean by a problem.

In order %o be able to work with our formal computer model we also have to find a formal definition
of a problem. Here, an instancc of a problem would be given by some string, i.c., finitc sequence of
characters over some fixed, finitc alphabet “known” to the computer, which for us somchow describes
the problem instance we have in mind. As the execution of an algorithm, given somc string as input, is
independent of what meaning we attach to the string, we arrive at the following formal

Definition:

(a) A problem is a subset L of the set ° of strings over some (fixed, finite) alphabet E.
(b) An algorithm A (on a RAM) recognizes the problem L, if, for any = € E°, on input z ! the execution
of A eventually stops and the output is
““yes”, ifz € L,
*“no”, otherwise,
() We say that A accepts L if, for any z € &°, on input z the exccution of A eventually stops with
output “yes” if and only if z € L.
(So we do not care what A does on any input ¥ & L except that it must not stop with output “yes".)
Returning to our trivial example above, we might not be intercsted only whether the n-th digit of
« is 5, but instcad would like, on input n, to obtain the first n decimal digits of . Hcre we are not
dealing with a recognition problem with a simplc yes/no answer, but with the more gencral problem of
computing a function, say from %° to £°;

We sssume by convention that £ is such that A is able to determine the end of input on its input tape.

4 _ 1. INTRODUCTION

Definition:

Let f: &* — E° be a (in general partial) function. An algorithm A (on 2 RAM) computes [if, for
any z € °, on input z the execution of A eventually stops if and only if f(z) is defined if and only if
A stops with output f(z).

For a given problem L or function f, therc naturally are — as in real world economics — many
different “costs” or, as we call them, complexities, and it always depends on the circumstances which
ones are relevant or interesting. Some are static in the sense that they do not depend on the problem
instances, e.g.

- the minimal size (= number of instructions) of an algorithm which recognizes L or computes f;

- the minimal number of branching instructions in an algorithm for L or f.

Other complexity measurcs are dynamic in that they do depend on problem instances, i.e., the input. The

two most important kinds of dependencies are

- worst-case complexity, where, for any n € N, the maximum cost for any z of length n is taken with
(a) z € T° for a recognition problem,

{b) z € L for an acceptance problem, and
(¢) z € dom/S for computing a function f.

- expected or average complexity, where, for some 'sizc’ function and probability distributions over all
inputs of the same ’siz¢’, the average cost (according to the corresponding probability distribution) over
all inputs of each ’size’ is taken.

We shall mostly emphasize worst-case complexity because it is universal (with respect to the underlying
model) and does not depend on the choice of morc or less arbitrary probability distributions.)

The two most important types of costs or complexity which we shall be considering are those
concerned with (computation) time and (storage) space.

The time used in the exccution of an algorithm A on some input z € £° is the sum of the time
spans for all exccutions of the basic instructions in the algorithm.

The space used in the cxecution of A on input z is the sum of the spaces’ occupied by the memory
cells referenced during the execution of A.

To complete the dcfinition of time and space complexity of an algorithm, it remains to state the time
required t0 exccute cach RAM instruction and the space used by a memory cell. Again there are two
commonly uscd ways to define these costs. The first is called the uniform cost criterion. It attributes
one unit of cost (time or space) to each exccution of a basic RAM instruction and to each memory cell,
regardless of its contents. Unless otherwise mentioned we shall refer to this cost criterion. It is appropriate
as long as a rcal world computer can simulate the RAM algorithm using only some fixed amount of time
and storage words per basic RAM instruction and memory cell. In principle this simply means that the
numbers stored in the RAM memory cells must not become too big. If this should happen, a somewhat
more realistic approach might be the so-called logarithmic cost criterion which defines the space used by a
memory cell to be the length of the binary representation of the biggest (in absolute value) number stored
in the memory cell during the execution of the algorithm, and which assigns to each basic instruction the
sum of these lengths of all its opcrands as the time span uscd. A detailed example of logarithmic costs for
a RAM instruction set can be found in [AHU74]. We remark that the time and/or space complexity of
some algorithm may be widcly different depending on whether the uniform or logarithmic cost criterion
is employed.

1.3.2. Asympitotic Complexity.

We now address the problem of comparing complexity functions. Assume that for a certain problem
we have two algorithms, onc with complexity f(n) = n?#! logn, the other with complexity g(n) =
n?/logn !. ‘Though for small n the sccond algorithm has a smaller complexity, there is a break point

togn denotcs the real-valued solution to 2° == n,

1.4. REDUCTION AND RECURRENCES. 5

ny (ng = 39) such that for n > n, the situation is reversed (if the complexity considered is worst-case
complexity this does nof mean that for all inputs of size at least np the first algorithm has a lower
complexity that the second; there must be however infinitely many such instances).

Most of the tinles we are interested in comparing two algorithms when applied to problem instances
of ever bigger sizc. The complexity of an algorithm for the input size tending to infinity is called its
asymplotic complexity, and using it as criterion we might therefore say that the first algorithm above has
a lower complexity than the second (note however that in practical life the situation is not as simple,
and that for a given problem instance the selection of the better algorithm always depends on the break
point). .

For the comparison of complexity functions in the asymptotic sense, we use the following notation:

Definition:

Let f,g: N — N be two functions; we say that
(a) f = O(g) if 3¢ > 0 such that f < cg;
(®) f=o(g) ifVe >0 f<,.cg
(f <4 g means f(n) < g(n) for all but finitcly many n);
(©) f=1Q(g) if 3c > 0 such that f >, cg;
(d) s = 8(g) if f = O(g) and .= 0(g).
(See [Knu76].)

1.4. Reduction and Recurrences.

When designing an algorithm for some problem it often happens that we can derive a solution for any
instance with, say, relatively little cost if we only have the solutions to a few other, smaller instances of the
same problem or of instances of some other problem which we know how to solve. In the second case it
is immediate to determine the complexity of an algorithm for the first problem which uses this reduction,
from the known complexity of the second algorithm and the additional cost for the reduction. When we
wish to determine the complexity of an algorithm constructed according to the first case, however, we
usually end up with a relation of the following form for the complexity C of our algorithm:

C(n) = Fy(C(n'Y,...,C(n")) + Fy(n),

where F, describes the dependency on the complexities of the smaller problem instances of size
), ..., nl) and F, represents the additional cost incurred to form a solution for the original problem
instance of size n. We shall now discuss some techniques for solving such recurrence relations, i.e., finding
closed-form expressions for the function €' when the function F, is sufficiently simple. Nonectheless,
these methods provide a systematic way to deal with a fairly large class of rccurrence equations (also
sec [Luc80]). The techniques are, in turn, multipliers, characteristic polynoniials, generating functions, and
domain and range transformations. We shall demonstrate each technique by mcans of an example where,
for notational convcnience, we write f, for f(n).

1.4.1. Multipliers

Suppose that the following recurrence relation is given:

Jo=2fn-1+mn; forn>2,
h =1
That is

Jo=2fn_1+n; /-1

:
4
b
L
2
1
;

A——— - - —

6 . 1. INTRODUCTION

Jaci =2fa_a+(n-1);
fa2= 2fa-s+ (" - 2);

_——
D

fu—o‘ = 2.'"-;_1 4+ (n - i); / .28

=2+ /-2t

If we multiply each equation with the multiplier indicated to its right, then sum up all equations and
cancel identical terms on both sides, we obtain

n—2
Fo=2"""f1 +) (n—d)2
1=0
= i(n —1)2 bocause f; = 1
i=0
n—1 <
=)y Y ¥=2""_n-2
=0 j=0

The last line follows by elementary transformations (also see 1.4.3.). Hence we obtain

fa=2"1_pn_9

1.4.2. Characteristic Polynomials.
As an example, suppose we are given

fn =fn—l + fn—ﬁ forn 2 2
fi =1, Jo=0.
Such a recurrence is called a homogeneous linear recurrence with constant coefficients.

If we try to set f,, = a™ for some a still to be determined we gel the following characteristic equation
for a (assuming that a 7 0):

1+V5
2

a®—a—1=0, and hence a,; =
It is clear that every linear combination
: c1a} + caa}

is then a solution to the recurrence relation f,, — f,_; — fa_2 = 0 for n > 2. The boundary conditions
for fo and f, dctermine specific values for ¢; and c;, in our example ¢, = 1 /\/5 = —c¢,, and hence

go= L[(1vBY (1= vEY
T V5 2 2)
The question is whether by this method we can obtain all sotutions to recurrences like the one above. It

is not hard to sce that this is truc if all roots of the characteristic polynomial are distinct. For the general
case, with multiple roots allowed, we citc the following thcorem (for a proof scc [Liu68]):

e rw— ——— - - n

Lt e v o———v . . 5 bee

¥

1.4. REDUCTION AND RECURRENCES. 7

Theorem:

Let p(z) be the characteristic polynomial of the recurrence
* Pofatpifacit...+pufax=0; forn2>k
with constant coefficients p;. Let the roots of p, over the complex numbers, be r;, ¢ = 1,...,m, each
with multiplicity ¢;. Then all solutions of (*) are given by

z:l(" 'g CijT)r

where the c;; are arbitrary constants.

If the given linear recurrence relation (with constant coefficients) is inhomogene: »a first try to
derive a homogencous recurrence using appropriate multipliers, and then apply the hod discussed
above. A more formal treatment can be found in [l.ue80].

1.4.3. Generating Functions.

For a sequence (f,)n>o0. its generating function IF(z) is defined as

Flz)=) faz"

n20

Just using calculus, we can establish the following table:

generating function n-th element of the corresponding sequence
cF cfn
F+G fntgn
F.G .- Yo fiOn—
z*F ifn < k then 0 else fn_x
F(2)/(1-2) ik
z45(2) nfa
fy F(t)dt if n = 0 then 0 else f,_,/n
F(e2) : " fn
Hence, if we put
F(z) = . ’2'2%" = ——2;,
G(z) =) na"= ——,
nz0’ z)

we obtain

F(z)~Q(z) (_zW—fz_j ZZ("—')z‘

n>0 =0

Decomposing z/((1 — 2)*(1 — 2z)) into partial fractions we get

z _ —2 2z + 2
(1-2p(1-22) 12z (1-2p¢ 1-2¢

B

N ee B ey

e —— e

- ———— e -

8 1. INTRODUCTION

and thus the table above provides the answer

Y (n—d2=2""—n-2

1.4.4. Domain and Range Transformations.

A real-valued sequence (f,)n>o is a mapping from N to the reals. Thus a transformation on the
values of the sequence is called a range transformation and a transformation on the indices a domain
transformation. We first show an example of a range transformation. Suppcse we are to solve the

recurrence
Jo=fazs* fa-2s forn > 2,
i =2, Jo=1
If we let
gn = log fu,

we may rewrite the recurrence as

On =Gn-1 + Gn_2, forn 2> 2,
n=1 go=0.

For this recurrence, we know the solution (see 1.4.2.; g,, is the n-th Fibonacci number F,.} and substituting
back yields
S = 2F=,

A domain transformation is conveniently used in the following example. Let

o =3[nj2 + 1, for n = 2% > 1,
fi =L

Here we substitute the index and define
o= fa,

from which we get the following secondary recurrence for the gy:

o =3g:1+ 2 fork 2>1,
go =1,

which can be solved with methods discussed earlier. We obtain g, = 3*+' — 2**+! and therefore
[=3n'"%3 _2q,

This concludes our discussion of several very useful techniques to solve recurrence relations for
sequences. Additional material can be found for instance in [Mil60,Rci77,Ri058,Ri068).

T T AP

e e n e amm en e T = ——— e + e > e

Chapter 2

Higher Level Data Structures

2.1. Basic Set Operations.

It is often uscful to design algorithms in layers. That is, first the algorithm is described in a high level
way with abstract structures that are described in a fashion that is independent of their implemcentation
Then the implementation details of the structures are worked out or discovered in the literature.

It is nccessary to talk about the specifications rigorously. To do this, the language of sct theory is
used. There are several operations that are often performed on data structures. ‘These involve g, a,, a,,
as data elements and S, S,, S,, ... as sets of data clcments. The operations are:

1. Member (a,S):isa € S ?
. Inscrt (a, S): S—SUa.

. Delete (a, S): S«8 — a.

. Replace (a,d’, 8): S—(S —a)Ua'.

. Union (8, §;): 8i«~8; U S;.

. Find (a): if @ € US; then ¢ such that a € S; otherwise undefined.

lf in addition therc is a totally ordered universal set which contains all possible data elements, the
following operations make sense,

7. Min (S): if S = @ then undefined else min{}; b € S}.

8. Max (§): if S = 0 then undefined elsc max{b; b € S}.

9. Split (S;,a,S;): if a € S; then S;—{b € S;;b > a}; Si+—{b € S;; b < a}, otherwise undefined.

10. Concatenate (S;, S;): if max(S;) < min(S,) then S;+S; U S, clsc undefined.

It is ususally necessary to be able to perform scveral of these operations on the same sets. Some of
these combinations of operations have names and well know implementations.

Wb WL

name J supported operations ' implementations
dictionary ‘ member, insert, delete hash table, balanced trecs
priority queue inscrt, delete, min balanced, leftist trees, heap, binomial forest
mergeable heap insert, delete, min, union 2-3 wee, binomial forest, leftist tree

concatenable queue | insert, delete, split, concatenate 2-3 tree

Here “balanced tree”” means any of several balanced trec schemes, including 2-3 trees, AVL trees,
and RB-trees. :

e i iy S —

————— e

10 2. HIGHER LEVEL DATA STRUCTURES

2.2. Binomial Queucs.

2.2.1. Definitions. A

Binomial queues are used to implement priority qucues and mergeable heaps. These queues are
based on binomial trees. Binomial trees are defined recursively. The smallest one, B, is a single node.
In general, B,, consists of two B,_,’s, such that the root of one is made the son of the root of the other.
A picture should help.

There are two ways of thinking of binomial trees, depending on whether the sons of the root or the
longest path from the root to a leaf is being concentrated on. This path is called the handle. There is
onc tree of cach size on the handle. Again a picture should help.,

Hatlldle | @ =

A binomial trec has the following properties:

'Bnl =2"
height(B,) = n

2.2. BINOMIAL QUEUES. . 11

n

there are (k

) nodes at depth &

We have seen how to have a number of nodes in a tree that is a power of 2. It is necessary to allow
structures with an arbitrary number of nodcs, n. Consider the binary cxpansion of n, n = - 6:;2°. Then
the binomial forest, F,,, of n nodes, includes a B; if and only if b; = 1.

A binomial queue is a binomial forcst with a key, K attached to every node, ¢, so that the “heap
condition” is satisfied. The “heap condition™ states that if node j is a descendent of node ¢ then
K‘ S K 3 ’

2.2.2. Union,

Now it is necessary to consider how the operations are implemented. First consider the operation of
union. That is, there arc two forests, F; and F; that nced to be merged. There are two cases to consider:
a) Ifiand j are powers of 2 then if 7 3£ 5 the result is simply the two trees. Otherwise, the two trees

must be joined. This is done by having the root with the smaller key become the father of the other

root.

b) In general, a process like that of binary addition is needed. Each size of tree from smallest to largest
is considered. Sometimes there is a side tree called the carry present. Initially it is absent. For
any size there are from zero to three trees present, possibly a carry and possibly one tree from each
forest. If there are zero trees present then there is no tree of that size in the result and no carry for
the next stage. If there is exactly one tree present, that tree is present in the result and there is no
carry. If two trees are present then they are merged as in case (a) to form the carry. There is no.
tree of that size present in the answer. If three trees are present, then two are merged to form the
carry and the third is present in the answer. The cost of this opcration is bounded by the number
of trees in the forests. Therefore the cost of union(F, #y) is O(log(z) + log(3)).

2.2.3. Insertion.

The operation of insertion is conceptually the same as union with a one element forest. There are,
however, subtlcties to the analysis of the cost that make it worth while to be considered scparately. Since
onc of the forests consists of one node, once the chain of carries stops, the rest of the remaining forest
can be added in constant time. Therefore, the cost of adding n nodes to a binomial quecue is O{n + ¢),
where ¢ is the number of trees merged. Each edge in the forest represents the fact that two trees have
been merged. The number of edges in F,, is m ~ w{m), where w(m) is the number of I's in the binary
representation of m and the number of trees in F,,,. Therefore ¢ = (m+n—w(m+n))—(m—w(m)) =
n + (w(m + n) — w(m)). Since 0 < w(j) < log(j), ¢ < n + log(n + m). Therefore, the cost of doing
n insertions into an m node forest is O(n + log(n + m))

2.24. Min.

To find the smallcst clement in a forest, it is necessary to look at the root of each tree to find the
smallest. There are w(nr) =O(log(n)) of these.

2.2.5. Deletion.

The dcletion operation is the most complicated. The node that is to be deleted is in some tree,
B;. The dcletion opcration consists of somechow decomposing this tree into a forest consisting of the
node to be deleted and one tree of each smaller size. This forest is then merged with the original forest
with B; dcleted. When considering the decomposition of £3;, there are two cases, either the node to be
removed is the root or it is not. If the node is the root, then the second way of looking at binomiat trees

~ determincs the decomposition. If the node to be delcted is not the root it is a member of some B; on

N

12 ' . 2. HIGHER LEVEL DATA STRUCTURES

the handle. The trees below B; on the handle form a B;. That tree and the trees above B; are part of
the decomposition. The trees smaller than B; in the decomposition are found by recursively deleting the
node from B;. Each tree can be found in unit time. Therefore, the time to delete a node from F,, is
O(log(n)). Note that for this to be done the node must first be found. A dictionary is useful for doing
this.

The details of how to represent binomial trees are covered in the homework. For an extended
discussion, also see [Bro78). :

Some applications of binomial queues include scheduling, discrete simulation, sorting, optimal code
construction, shortest path algorithms, minimum cost spanning tree algorithms. Binomial trees are
important in a linear median algorithm and other places.

- - . C— R D e e e crmmme - e e s e

——
——

e e Bttt i = mamieSeET

AR o

[SUSUNUINI R

Chapter 3

Selection — the Median Problem

Suppose we are given a totally ordered universe (U, <) and we want to find, for some ¢ with
1 < ¢ < n, the ¢-th largest clement of a given finite S C U with n elements. For 1 = |, this is the
problem of finding the minimum (resp., maximum, if we reversc the order) of a set. It can (and in sports
usually is) solved by an Lnock out tournament, and ii is not hard to sce that this method minimizes the
number of comparisons (i.e., the number of “matches™). Howcver, when it comes to determining the
vice champion, this need not be, by any mcans, the loser of the final match. As a matter of fact (though
this is not commonly realized in the world of sports), it might be any one of the participants in the
tournament who was thrown out by losing against the final winner (of course, we assume here transitivity
of the “is a better player than™ relation). And it was alsc this apparent injustice which might have led to
the formulation of the first selection algorithm [Car83) (for i 7= 1, n).

Another variant of the selection problem which deserves specific mentioning is the so-called median
problem. 1t calls for the determination of the [n/2]-th largest clement and is of practical importance
whenever we want to split a set into two equal sized parts such that the clements in the onc part are all
smaller and those in the other all bigger than the splitting clement (we may assume here without loss of
gencrality that n is odd).

In the sequel, we are going to dtscuss two algorithms for selection problems. For the analysis of
these algorithms, we choose to take the number of comparisons made by the algorithm between elements
of the set, as the dominant part of the 0vera)l complexity. In these terms, both algorithms turn out to be
of linear complexity.

3.1. The Blum-Floyd-Pratt-Rivest-Tarjan Selection Algorithm.

Let m be a small, odd number (say, 5 < m < 15), and consider the following algorithm for
sclecting the i-th smallest element of S for any 7 between 1 and n.

Linear Selection Algorithm 1:

1. Divide S into [n/m] subscts, |n/m] of them with m clements.
2. Sort these |n/m)] subsets; if [n/m] is even, alse sort the remaining subset minus onc clement. Let S’
be the sct of the medians of thesc sorted subscts.
3. Determine recursively the [|S’]/2]-th element of §7, call it s.
4. Divide S'into S, := (8’ € 5;8 < s} and S, := {&' € S; 8’ > &}
(note that |S,|, |S2] > n/4 if we assume, and we do this without loss of generality, that n > 3m —1).
5. If 8, 2> 1 determine recursively the 1-smallest clement of S, ;
if 83 > n — ¢ recursively determine the £ — |S,| — 1-smallest clement of Sy;
otherwise return s.

The worst-case complexity T of this algorithm (measured in number of comparisons) hence is

el

14 . 3. SELECTION — THE MEDIAN PROBLEM

bounded by
T(n) < T([n/m]) + T(13n/4]) + [n/m] - C + |n/2] + m,

where C,, is the number of comparisons needed to sort m elements (using, say, the Ford-Johnson sorting
algorithm). By induction we obtain

T(n) £ emn with ¢, =~ 20.

For further details see [BFP73}.

3.2. The Schonhage-Paterson-Pippenger Median Algorithm.

This algorithm is the best algorithm known so far with respect to its asymptotic complexity (expressed
in number of comparisons used by the algorithm). It makes essential use of binomial trees. It is also of
interest because it is not recursive (based on a divide-and-conquer approach) but rather is best described
as a pipelined algorithm.

Definition:

Let S, denote the partial order consisting of 2k + 1 elements & of which are smaller, and k of which
are bigger than the remaining element, which is called the center of S,.]

We are now going to define a special variant of binomial trees with one distinguished node, called
the center. The nodes of the trees are elements from a totally ordered universe.

Definition:

(a) The tree H, is a singleton node, which is also its center.

(b) The tree H, is obtained by combining two Hy's by an edge; its center is the smaller of the Hy's.

(c) The tree H, is obtained by combining two H,'s by an edge; its center is the bigger of the centers
of the two H,’s.

(d) The tree Ha,a, for A > 0, is obtained by combining two Hyj,_,’s by an edge; its center is the smaller
of the centers of the two constituents.

(e) The tree Hgpyy, for A > 0, is obtained by combining two H,,’s by an edge; its center is the bigger
of the centers of the two constituent trees.

(Note that there is an irregularity in the definition of the H; just for small ; Hg, Hy, Hy, ..., Hgppty. -

are of the same “variety”, and so are H,;,Hs, H,,... ,Hsp,....)

We now state those properties of the H, which will be needed in the algorithm, in the following
Decompositioh Lemma;

(a) H), has 2* nodes, exactly 2* — 1 comparisons arc nceded to produce it (because it is a treet).
(b) For h > 1, Hy, can be decomposed into

-its center,

-a (disjoint) collection {Ho, H3, Hj, ..., Hsp—1} of subtrees all of whose centers are above the
center of Hs,, and

-a collection {H,, Hs,H,,...,Har_3} of subtrees all of whose centers are below the center of
Hsa.

(c) H, can be split such that the component of the center contains exactly 21*/2! elements all at or
a) above the center if r = 0, 3,5,7,...,
B) below the center if r = 1,2, 4,8,...,
by removing at most 4 - 2L*/%) edges.

L PR P S

© e e e

i

3 ENC

BT st O L AR TP

3.2. THE SCHONHAGE-PATERSON-PIPPENGER MEDIAN ALGORITHM. 15

(d) If k < 2% — 1 then Hj, can be decomposed such that the somponent of the center contains 2k + 1
elements, k£ of which are bigger, and k£ of which ar¢ smaller than the center (i.e., the component
contains S,); for this, at most 3k + 2h edges have to be cut, and the remaining components are of
the form H,, s < 2h.

The proof of this Decomposition Lemma is left as a homework problem. For further details, also
see [SPP76).

Now suppose that we have a chain of ¢ pairwise disjoint S,’s whose nodes are taken from some set
with n elements, and let r be the number of leflover elements (i.e., n = (2k + 1)t + r). Also assume
that the centers of the S,’s appear in the chain in increasing order, and let top (bot) be the last (first)
center in the chain. Under the assumption that r is less than £ — 1, we can then conclude that top is
known to be bigger than

E+(t—1)(k+1)> k+(k+1)(%i2—1)= nol.

Hence top and the clements known to be bigger than top are also known to be bigger than the median
of the n element set. A corresponding situation applics to bot. Thus, 2(k + 1) clements can be discarded
from the set and the median determined as the median of the remainder.

The (basic version of the) SPP Median Algorithm is shown in thc diagram on the next page. There,
n is the number of elements for which we search the median, & is set to [n'/4], and h is chosen such
that 2*-! < k < 2»,

The algorithm maintains two pools, onc of which contains H,’s, the other just singletons (the two
pools actually could be merged; for subsequent improvements of the basic algorithm, it is however
convenient to have them separate). Initially all elements of the set are in this second pool. The first
process in the algorithm recursively forms Hyj-trees, whenever there is enough building material available
in the two pools. This means in particular that, whenever there are two H,’s with the same s in the pools,
they are combined to produce an H,,,. Whenever an Hy, gets produced by this formation process,
it is decomposed into a component containing S, and various H,’s (which are being recycled in their
pool) according to the Decomposition Lemma stated above. The S;-component is then inserted into a
chain of such components in a way such that their centers are in increasing order. Whenever none of
the processes discussed so far can run any more, onc of two other processes is started, depending on the
relation between the length ¢ of the S,-chain and the number r of elements which arc leftover elements
outside of the chain. If £ — 1 > r then, as argued above, 2k +2 extremal elements in the chain can be
discarded because they cannot possibly be the median, and as half of them lie below and half of them
lie above the original median, we are still left with determining the median of the remaining clements. If
t — 1 < r the following analysis will show that the number of elements remaining in the whole process
is small enough so we can sort them and thus determine their median.

Analysis of the SPP Median Algorithm,
Consider the following quantities:

r := the number of leftover elements (elements which are stuck in the recursive Hy,, formation process
respectively its input pools). Note that at most onc H, can be left over for every s < 2h, and as
H, contains 2° elements, we have
r<othg,

R := the number of elcments to be sorted in the final step of the algorithm; these are the elements in
the chain when this last step is invoked, and the leftover clements. As ¢ < r + 1 in this case, we
have '

R=(2k+1)t+7 <2™(2k+1)+ 2" -1,

3. SELECTION — THE MEDIAN PROBLEM

pool of pool of singletons

H, s < 2h (initially n) 1

~ /7

recursively form Hgp
(using the biggest H,’s possible)

\
decompose Hj; into component

containing Si, and H,’s;
recycle the H,’s

insert S;-component into chain with
centers sorted in increasing order . \

chain of Si’s

if all processes above stalled, and
t—1<r t—1>r

N ;

discard extremal (2k + 2) elements

sort all remaining elements; return remainder of these two S;'s
determine their median to the singleton reservoir

— Diagram of the basic SPP Median Algorithm —

ol

N

¢
¢

e AP e mm e s -

3.3. A LOWER BOUND FOR THE MEDIAN PROBLEM. 17

m := the total number of 8y-components produced during the whole process. As, whenever 2k + 2 '

elements are discarded from the process, two S;-components are destroyed, m equals twice the
number of such discarding actions plus the number ¢ of S,-componcnts left at the end. Hence,

m—-z.:'i.}.g—?_—_@...t
T 2%+2 T k+1

We are now able to count T'(n), the total number of comparisons made by the algorithm, As
the algorithm always preserves acyclicity of all graphs involved. T(n) is equal to the number of edges
generated during the algorithm. And this number in turn is bounded above by

the number of edges in all S,-components
plus the total number of edges removed in the decomposition process
plus the number of edges left at the end in the pools of the H,,-formation process,
plus the total number of comparisons for the chain insertion process,
plus the number of comparisons for the final sorting process.
Together this yields

T(n) < (ETR +t)(2k + 3k + 2h + log(n/(2k + 1))] + Rlog R + 1.

As k = [n'/4}, and 2*! < k < 2", we have

r =0(k*);
t =0(k*);
R =0(k*), and hence

T(n) < 5n + ofn).

Some improvements are possible for this basic version of the algorithm. Their description would be
very laborious, and the reader is referred to [SPP76] for the dctails. Implementing these changes, we
obtain a median algorithm whose asymptotic complexity in terms of number of compansons is 3n + o(n),
the best known upper bound so far.

Theorem:

The median of a set of n clements can be determined using at most 3n + o(n) comparisons.

3.3. A Lower Bound For the Median Problem.

We have seen that it is possible to compute the median of an n-element set in linear time. The
question of how many comparisions are nceded to do this naturally arises. Tac best published result of
7/4n — ofn) is duc to Pratt and F. Yao [PFY73). Here a weaker result duc to Blum, Floyd, Rivest, Pratt,
and Tarjan [BFP73] will be discussed.

Theorem:
Finding the median of an n element set requires at least [3+/2] — 2 comparisons.

Proof: The proof of this thcorem uses what is called an adversary argument. An algorithm A asks
questions of the form: “is z < y7" The adversary, B, gives answers so that all of its answers are
consistent and A has to ask “many” questions.

It 8 necessary to describe B in greater detail. Supposc n is odd and m := |n/2]). B maintains
three sets of elements: U, L, G. B decides that all of the elements in G arc greater than the median and

X

18 3. SELECTION — THE MEDIAN PROBLEM

that all of the elements of L are less than the median. The elements of U are candidates for being the
median. B also ensures that if g€ G, l€ L,andu € U theng > u > L.

Basic observation:

As long as |L}, |G| < [n/2] it is consistent for B to assume that the median is in U. If in addition,
there are two incomparable elements in U, A has cannot have determined the median yet.

Thus, B will try to keep L and G small and U big. For simplicity, however, B will keep in U only
those elements which have been compared to at most one other element currently in U. If this condition
is violated due to a question from A, appropriate elements are removed from U and put into L or G so
as to restore this condition. B always answers such questions so that there are never three elements of U,
a, b, ¢ such that a is known to be less than b and b is known to be less than e.

First phase of the adversary algorithm.

Initially, L = G = 0, and U contains all n elements. If A asks a question “Isz < y?”,and z and y
are not both in U B answers it so that it is consistent and the invariance L“<”,...,U,...,“<",...,G
is maintained. From B’s point of view this is a redundant comparison. If z and y are both in U then B
answers the question depending on which of z and y, if any, have been compared and what the result

was. The six cases are drawn below. A line between two elements indicates that the higher one is known
by A to be greater than the lower one. A dotted line represents the question A is asking.

state of z,y B's action number of pairs |U| |L| |G|

y .
1 Ze --—-of : Iz +1 — — —

Y ' y—+G
2) z.f"I ,/\- 4 a4 — 41
z
J) zo----Jy

o 1

<
i
&~
|
|

+1 —

N —

-t

LR T R T S T
\

e

3.4. REFERENCES. 19

If C is the number of comparisons made so far, and P is the number of pairs in U, then it is obvious
by induction that :

C—~P+2U| > 2n.

Second phase of the adversary algorithm.

The first phase of the adversary algorithm stops if either |[L| = |n/2], |G| = |n/2], or there are not
two incomparable elements in U. Suppose the latter happens. Then U] < 2,s0 C — P + 2(2) > 2n.
This means that C > 2n - 3.

If, on the other hand, L or G gets oo large, B enters a second phase. Suppose without loss of
generality, that it was L that became to big. B will then force A to find the minimum element of U,
which will be the median. This phase will require an additional || — P — 1 comparisons, because [U|—1

comparisions are ncessary to find the minimum of |U| elements and at most P of the comparisions have
been done. Rearranging the invariant,

C 2 2n+ P -2\U|
. This means that the total number of comparisons for both phases satisfies
C+lU|-P-122n+P-2U|+|U|-P~1=2n~|U|-1
Since L = |n/2], U < [n/2]. Therefore,
3
C+WUI-P-12[F1-2

which completes the proof. §

34. References.

Expected time bounds are discussed in {FIR75). Reiser [Rei78] discusscs the selection problem when
the elements have weights. Further lower bounds for the selection problem are proven in [Hya76).

e ien L T A e
rmw

N

Chapter 4

. Minimum Spanning Trees

4.1. A Schema for Minimum Spanning Trec Algorithms.

Let G = (V, E) be a connected undirected graph with {V| = n nodes and |E| = e edges, and let
¢(v,w) > 0 be a cost value attached to (v,w) € E.

Definition:

A minimum spanning tree for (G, ¢) is any tree T = (V, E') with the same node sct as G, and with
edge set £’ C E such that 35, e g ¢(v, w) is minimum,

First basic observation:

Let V! C V, and let (v, w) be an cdge in E, such that v € V' and w € V ~ V' and such that
¢(v, w) is minimum with respect to all edges having the first property. Then some minimum spanning
tree for (G, ¢) contains (v, w). '

Second basic observation:

Let (v, w) be an edge on some cycle: C in G such that (v, w) is maximum for all the edges on C.
Then some minimum spanning tree for (G, ¢) docs not contain (v, w).

The proof of thesc two propertics is left as an easy exercise. Though both of them can be used to
construct cfficient algorithms for finding minimum spanning trees, we shall, in the scquel, only employ
the first. From it, we can immediately derive the following very gencral frame for minimum spanning
tree algorithms:

1. [Initialize a forest I of n trees, each of them a singleton node from V.
Repeat as long as F has morc than one tree:

2. select a tree T from K

3. find an edge (v, w) with minimal (v, w) such that v is in 7 and w is
not; let T’ be w's tree;

4. update F by combining T, T", and (v, w) into a single tree.

There are a number of possibilitics to implement the forest F, to choose criteria for the selection of
atree T in step 2, and to facilitate- the scarch operations in step 3. We are going to discuss two solutions.
The first one is very simple and casy to program, whereas the second has an asymptotic complexity which
is the best known so far for the gencral case (better upper bounds are known if we restrict the class of
graphs being considered, e.g., to planar graphs).

e v 4 ——

cm mew——t o ——

L.

———

4.3. A BETTER MINIMUM SPANNING TREE ALGORITHM. 21

4.2. Kruskal’s Algorithm.

In Kruskal’s algorithm {Kru56)], the edges are first sorted according to increasing cost, and then
scarched in this order. Whenever an edge is encountered which connects two different trecs, these two
trees are combined into one. For this last operation, a simple weighted union algorithm is used. We
assume now for convenience that the nodes of the graph G arc just the integers between 1 and n.

algorithm MST1,;
begin
generate a list L containing the edges of G sorted according to nondecreasing cost value;
initialize an in-forest F', with the i-th trec 7} consisting of node ¢, for 1 < i < n
€0 an in-trce is a rooted tree with all edges pointing towards the root oc;
initialize M ST to the empty tree;
for 1 := 1 to length(L) do
begin
(v.w): = 1-th clcment of L;
z := j where j such that » is a node in the trec T; of F;
y := j where j such that w is a node in the tree T; of I;
if z # y then
begin
MST := MSTU{(v,w)};
if |T| < |7,| then UNION(T,,T,) co making the root of 7, a new son of the root of T}, oc
else UNION(T,,T,)
end
end
end MST1,

Time complexity analysis for MSTI:

1. The initial sorting of the cdges takes time B(eloge) = O(elogn).
2. The UNION operations can obviously be done cach in time O(1).

In order to analyse the complexity of the FINI) operations which determine the tree some node is
currently in, we notice -that at all time steps and for all trees 77 in the forest F', height(T) < log|T|.
This is certainly true right after the initialization of F'. When two trees 7' and 7" are combined (call the
result for the moment U and assumce without loss of generality that |[T'| < |7”]), we have

height(T”) <max{height(T"), height(T) + 1} < max{log|T'|,1 + log|T|}
<log(|T| + |T"]) = log|T"].
3. It follows hence that the FIND operations can be done in time O(logn) each.

Together, we obtain ©(elogn) as an upper and also as a worst-case lower bound for the running
time of MSTL.

4.3. A Better Minimum Spanning Tree Algorithm.

We are able to improve on the complexity of the previous algorithm by applying some care in the
sclection of the tree in step 2 of the general algorithm. The selection rule which we are going to discuss

is called uniform selection (uscd by Sollin, sce [BGH56)), and is specified as follows:
Initially, all of the n trees (cach consisting of a singlcton node) are placed on a qucue.

Also, the stage of each of these trecs is defined to be 0.
In step 2 of the general algorithm, the tree 7" at the front end of the queue is selected (it will always have
a minimal stage among all the trees in the queuc). When it is combined with some tree 77 in the

22 4. MINIMUM SPANNING TREES

queue, both T and T are removed from the queue, and the combined tree is inscrted at the end of the
queue. Its stage is defined to be one more than the siage of T (which is the minimum of the stages of

T and T).

Basic observations aboui uniform selection:

a) The stage of any tree in the queue is < logn,
b) At any time step of the algorithm, all trees in the queue with minimal stage are pairwise disjoint.

The first fact comes from the obscrvation that, in order to crcate an' additional trec of stage 1 + 1, it
takes two trees of stage t. For the second property, one can easily prove by induction that at every time
step the trces in the queue form a partition of the nodc set of the graph G.

[An alternative tree selection rule is called smallest tree selection. Under it, the trees are also
organized in a queue, but at every step a tree with a minimal number of nodes is chosen. In an efficient
implcmentation, one has to take carc that such a minimal size trec can be found quickly. and that the
combined tree can easily be reinserted. It would also be possible to usc this sclection rule in the following
algorithm, but a somewhat bigger programming effort would result.]

For step 3 of the gencral algorithm, we implement the set of edges incident to some trec 7 (which
in turn is represented by its set of nodes) as a collection of ordered subsets of size < k&, where k will
be specified later. Specifically, if there are m such cdges, we divide them into [m/k] subscts, [m/k| of
them of size k, and sort all these subsets in order of nondccreasing cost. We also attach to the head of
each subsct a pointer to the tree to which it belongs, and a list pointer pointing to the smallest cost edge
which has not yet been searched. Furthcrmore we assume that from cvery edge (v, w) there arc pointers

to the hecad of its subset and to its twin representation (w, v} (occurring in a list attached to w’s trec).

algorithm MST2;
begin
procedure combine_upto_stage(s);
begin
while stage of the first tree in the trec queue is < s and the tree queue has length > 2 do
begin
let T be the first tree in the queue;
scarch each of T cdgc lists in the direction of increasing cost, starting in each list at the smallest
edge not yet searched, ".nd dcleting all cdges until onc is found that connects T' to a different tree,
say T';
add this edge to M ST,
combine T's and T"'s cdge lists by updating the tree pointers in 77s lists so that they point to 77;
remove T and T' form the queue;)
insert the combined trce at the cnd of the queue, and
set its stage to the stage of T' plus one
end
end combing;
MST :=0;
initializc the tree quecuc: each tree consists of a singleton node and is assigned stage 0;
for every such tree, represent the set of incident edges by a collection of lists of size 1;

* combine_upto_stage(log log log n);
* for every tree in the tree queue, reinitialize the collection of edge lists into ordered lists of size loglog n;

combinc_upto_stagr(log log n);
for. cvery tree in the tree queue, reinitialize the collection of edge lists into ordered lists of size logn;

combinc_upto_stage(log n)
co by the first basic observation, this implics that only one tree is left in the tree queuc oc

end MST2.

—————

TR e cm e e — ——

4.3. A BETTER MINIMUM SPANNING TREE ALGORITIIM. 23

Time complexity analysis for MST2:

Define stage s of the algorithm to be the time span during which the trees taken from the front end
of the tree queuc have stage s, and note that
1. if the edge lists are (re)initialized right before stage s, then during siage s therc arc at most n/2*
trees in the tree queue, and hence at most 2e/k + n/2* edge lists for all trees together;
2. the time for executing stage 8’ > s (without intermediate reinitialization) is

[4 n
-+ =+ D,),
()(k+2,+)

where D,: is the number of cdges deleted during stage 8'. Because of the sccond basic property
stated above, the trees which are in the tree queuc at the beginning of stage s are all pairwise
disjoint, and all edge lists attached to them arc scarched at most once during stage s’, because of
the uniform sclection rule. Also, due to the chosen implementation, the tree(s) to which an edge is
incident can be found in time O(1), and . time to combine the tree 7° (sclected from the front
end of the queue) with some other tree 7 .o proportional to the number of edge lists attached to
T, :

the time for (re)initializing the edge lists to ordered lists of sizc k is bounded by Ofelog k). Hence,
4. the total time to (re)initialize and then cxecute from stage s, to stage s, is bounded by

Ll

O(eloglc + (% + 2%)(32 ~ 8 + 1)+ e)
where the first term accounts for the initialization. the second for the UNION operations, and the
second and third together for the FIND, MIN and cdge deletion operations.

5. Of the three phases of algorithm MST2, the third phase (between stages log log n and log n produces
the dominating contribution. Substitution of its paramcters in the above estimate yiclds

Ofeloglogn + (e/ logn + n/2" s)log n — log log n) + €).

Theorem:

Algonthm MST2 finds a minimum épanning tree for an arbitrary connccted undirected graph with
weighted edges with/n time bounded by Ofe log log n).

“The steps marked (*) in Algorithm MST?2 could actually be omitted without affecting the growth rate of
its time complexity (producing, however, a bigger constant factor in the above estimate). Algorithm MST12
was originally discussed in [Ch176]. This reference also presents a number of alternative implementations
and morc cfficient algorithms for special subcases of the minimum spanning tree problem. The first
solution of time complexity O(eloglogn) for the gencral problem was given in [AYa75].

R 7 PR

Chapter 5

Path Compression

5.1. The UNION-FIND Problem.

For most of the groups of operations on scts which we have scen so far, time O(log n) per operation
is required in the worst case. If we consider only the two opcrations UNION and FIND we can do better
using a different tree structure (namely, in-trees).

The UNION-FIND algorithm has numerous applications, ¢.g. for the following problems: determina-
tion and verification of minimum spanning trees, depth detcrmination, closure of equivalence relations,
dominators in flow graphs, and many others [Tar79).)

In general, wo are given a sequence of n intermixed UNION and FIND opcrations as defined in
Section 2. We may assume here without loss of generality that the universal sct is {1,...,n}, and the
sct names are also clements of {1,...,n}. Also note that the argument sets of the UNION opcrations
are always disjoint.

The basic idea is to construct an in-tree (i.e., the cdges point towards the root of the tree) for each set
made up of nodes for each element in the set. Each node is a pair consisting of an integer representing
the clement, and a pointer to another pair (its father in the tree). For the root of the tree, this pointer is
assumcd to be nil. Without loss of generality, the root of the tree is identified with the name of the set.
The set opcrations are implemented as follows:

- FIND(3): from ¢'s node, follow the chain of pointers until the next pointer is a nil-pointer; its node is
the name of 1’s set.

— UNION(name,, name,): if the two nodes are different, make the sccond node a new son of the first
node (i.c., the nil-pointer of name, is updated to point to name,).

For this implemcntation the following sequence obviously is a bad case:

UNION(Z, 1);UNION(3, 2);. .. ;UNION(n, n — 1); n-times FIND(1);

From it we can immediately derive the following

Theorem:

The above implementation of UNION-FIND has time complexity ©(n?).

5.2. The Weighting Heuristic.

There are two heuristics which can be used to improve the basic algorithm. The first is the weighting
heuristic and is motivated by the desire to keep the trees balanced. We add to cach root a counter which
gives the number of nodes in the tree. ‘The weighting heuristic states that when two trees are joined the
root of the one with the smaller node count is made a new son of the root of the other. (In casc of a
draw, we still make the root of the sccond trec a new son of the root of the first tree.) As we have proved

5.4. UPPER BOUNDS FOR UNION-FIND wiTH PATH COMPRESSION. 25

already in the analysis of the minimum spanning tree algorithm MST1 (Kruskal's algorithm, Section 4.2)
the height of a tree with n nodes constructed according to this weighting heuristic is bounded by logn.
Hence the FIND opcrations require time at most O(log n) each while cach UNION can still be done in
constant time. On de other hand, let n. = 2* be a power of 2. Then the sequence

UNION(2, 1);UNION(4,3); ... ;UNION(n,n — 1);
UNION(4, 2):UNION(S, 6); ... ;UNION(n,n — 2);

UNION(», 2);
n-times FIND(1);

clearly requires time O(nlogn). Hence we obtain the

Theorem:

The UNION-FIND algorithm with weighting heuristic has time complexity 8(n fog n).

5.3. The Path Compression Heuristic.

The second heuristic to improve the basic UNION-FIND algorithm is called path compression or
coflapsing. It is motivated by the observation that in the bad case cxample for the basic algorithm n
FIND(1) operations are performed ecach requiring time O(n). After the first such FIND operation, the
structure should be modified in such a way that subsequent FIND opcrations for the same clement are
sped up. This can be done by changing all pointers encountered in a FIND opcration on the way up
to the root, to point to that root. We can use a stack to store all intcrmediate nodes on the FIND path,
or we can cven use these pointer cclls themselves (and some constant amount of additional memory) to
keep track of the FIND path (details to be worked out as a homework assignment).

It is also left as an cxercise to construct a special sequence of UNION's and FIND’s (here the
UNION’s do not employ the weighting heuristic, rather the root of the second tree is always made a son
of the root of the first tree!) which requires time O(n logn). Such a scquence is not hard to find if one
has in mind the two basic ways to parsc binomial trecs.

5.4. Upper Bounds for UNION-FIND with Path Compression.

- The derivation of good upper bounds for UNION-FIND algorithms which usc the path compression
heuristic requires some more cffort. Assume that starting from singleton sets n — 1 UNION's are
performed, and mn 2> n (intermixed) FINDS's. Let T' be the tree which would have been constructed by
the UNION opcrations if there had been no intermixed FIND's. For cvery element v in the universal set
(which without loss of generality we take to be the set {1,...,n} and whose clements we also identify
with the nodes in the forest maintained by the UNION-FIND algorithin), let k(v) be its height in T,
{Note: this is a static quantity, solcly depending on the order of the UNION's.)

Basic observations:
a) In any FIND path (in the original sequence with UNION’s and FIND's intcrmixed) v, — v, —
... — v, we have .
. h(vy) < h(v;) < ... < h{v,).
b) Let v — w be an edge in a FIND path, w not cqual to the root (i.c., w not the last node on
the FIND path), and ict v — w' be the edge from v after the path compression duc to the FIND
opcration. Then h(w') > h(w).

A

P00 e i B Mol 9 5 e dodbl S 5+ bt e

ey

26 5. PATH COMPRESSION

The first of these facts can be seen as follows. Assume we have a UNION(T,, T;) in the original
sequence. Let r, (resp., r2) be the root of T (resp. T) at this moment. Then we have in the rearrangend
sequence, and we may assume this by induction, a UNION(TY,, T;) where T} (resp., T') contains the
same elements as Ty (resp., T3), and is in fact a rearrangement of 7 (resp., 13) with the same root r,
(resp., 72). In the rearranged sequence, r, becomes a father of 75, and hence h{r,) > h{rz). Thus the
same holds for the edge r; — r, in a FIND path. Induction on the number of edges now completes the

argument.
The second fact is an immediate consequence of the definition of path compression and the first fact.

5.4.1. Path Compression without Weighting Heuristic.

We divide the elements into disjoint groups and account for the cost of a FIND path by charging
part of it to the FIND operation and part of it to the nodes on the path. Note that the cost of a FIND
is roughly equal to the length of the FIND path.

Let the group C; of clements consist of those nodes having between (bounds included) 2°-! and
2% — 1 descendents in 7', for i = 1,...,[logn].

For every FIND path v; — v, — ... — v, we charge
a) the last edge to the FIND operation;

b) an edge vy — Vi With v, and vy, in the same group to vy
c) any other edge to the FIND operation.

As there are only O(log n) groups, every FIND operation is charged at most O(log n). Now assume
that v; — vxyy and ve — vgy are (different) FIND path edges both charged to viyy (in different
FIND's). Then vy, vis, and v, are all in the same group C;. It follows, however, from the definition of
the path compression heuristic that (in T') the subtrees rooted at vi and v, must be disjoint, and hence
vk41 would have at least 2 - 2! descendents, contradicting the definition of group C,. Hence every
node is charged only O(1). Together with the matching lower bound (which is given as a homework
problem) we have

Theorem:

The UNION-FIND algorithm with path compression but without weighting heuristic requires
©(n log n) time. ’

5.4.2. Path Compression and Weighted UNION.

We use a similar approach as beforé, with a diﬁ‘ereﬁt division into groups.
Consider the functions
F(n): =2t (withn 23 (F(0):=0)

and *
ifn<1;

0
| P
log *n := {1 + log *([log n]) otherwise.
(Note: log *F(n) = n)) ‘
Let now group C; consist of those nodes z having ¢ = log *(h(z)), i.c.,

F(i—-1) < h(z) < F(i); fori=1,...,log*n,

and Cg of the nodcs with height zero. _ :
The cost for every FIND path is charged in cases a) and c) as above whereas b) is replaced by

V) an edge vy — v,y With v, and vy, in the same group is charged to »,. Hence every FIND
operation is attributed a cost of at most O(log *n). The charge to every v in C;, £ > 0, is at most

L

. AR

5.4. UPPER BOUNDS FOR UNION-FIND WITH PATH COMPRESSION. 27

F(i) — F(i ~ 1) because of the sccond basic observation made above. As there are at most n/2"
vertices in T with h(z) = h (as we have shown for the weighted UNION operation in 4.2) we have

F6) n n n n
. — < - == -~ = -,
Gl < 5=F(zi;l)+l ¥ - 22”'_l)+' 2F0=1) - F(d)

Hence all vertices in C; are charged together at most O(n). Summing up all the pieces we obtain
the

Theorem;

The UNION-FIND algorithm with path compression and weighted UNION requires O(n log *n)
time. '

By a much more sophisticated analysis, which uses a multilevel subdivision into groups (we only used
one lcvel), one can improve the upper bound for this variant of the UNION-FIND algorithm to

O(ma(m, n))
where a(m, n) is closcly related to the “inverse™ of Ackermann’s function A(m,n) with

A(m,0) = 1;
A(0,n) = 2n + 1;
Alm + 1,n+ 1) = A(m, A(m + 1,n)); for m,n > 0.

Ackermann'’s function grows faster than any primitive recursive function. As a consequence, a{m,n) < 6
for all “possible” values of m and n. For more details, we refer the reader to [Tar75]. In [Tar77], a
matching lower bound for the UNION-FIND problem is proven for a very general class of machines.
Finally, [Tar79)] gives some extensions of path compression to problems which require the computation of

certain functions along FIND paths. However, for the lowest common ancestor problem discussed there
also compare [Har80).

P

4
.
g
b
#
hed
»

Chapter 6

Pattern Matching in Strings

6.1. Pattern Matching Problems.

We are interested in finding intcresting patterns in strings of characters. There are many ways that
this problem can be made more rigorous, but first some definitions. Let ¥ be some finite alphabet. There
are two strings of interest, the text, text, and the pattern, pat. The following notations are used:

text = 1,...t,, t;, €L

, tezt;,’,- = {... t,'

pat = py... 7, pEL
pat® =p{)...p8), pex

We are interested in the following problems:
Find the first (all) occurrence(s) of pat as a substring in tezt.
Find the first (all) occurrence(s) of any of the pat(¥ as a substring in tezt.
Find the longest common substring(s) of tezt and pat.
For some (each) position, 1, in text, find the position(s) k 7 ¢, such that the common prefix of
text;,, and tezt, , has maximal length. This problem is called “internal matching”.
5. For some (cach) position, 1, in text, find the position(s) &£ in pat such that the common prefix of

text; , and pat,.,, has maximal length. This problem is called “external matching™.
6. Problem 2, except that the pat!¥ are given by a rcgular expression.

Ealt ol

6.2. Scts of Patterns Given by Regular Expressions.

We will consider the last problem first. Let a be a regular expression over L, and
M, = (sr 8o, J’a)

be a non-deterministic finite state automaton recognizing Lo € £°. Suppose that M, has the following
properties:
a) M, may comtain e-transitions;
b) [(6(s,0)] < 2, Va € SU{e}:
o) 5] < 2jal.

Here the length of the regular expression, |af, is computed by counting onc for a symbol from £
that appcars and onc for cach connective including concatenation. It is easy to construct an M, from a
with these propertics by structural induction.

»e

t]
1)
4

6.3. AUTOMATA RECOGNIZING SUBSTRINGS. 29

We now compute the sequence S; of sets of states that M, could be in after having read text, ,.
algorithm reg—pat(a,text);
begin

construct M, = (S, 89, f,96);
fori:=0to ndo
begin

if i=0 then So := {80} else S; := U,¢s,_, 6(s, &:);

mark all s € S;;

unmark all s € § - S;;

Q: =queuc of elcments in S;;

while Q is not cmpty do

begin

take an clement, say s, from Q;
add cach unmarked s’ € §(s,c) to S; and Q and mark it

end

co we havc just closed S; under e-transitions oc;

if f€S; and 7 > 0 then mark ¢; with

co the marked clements are the the places where an instance of an element of £, ends oc

end
end.
It is obvious that exactly cvery prefix, tezt, ; of text cnding with an underscored ¢ is in L,.

The construction of M, can be done in time O(]a|). Clearly the running time of the algorithm
reg_pat is bounded by

~

O(n|S]) = Ofnlal),
because in the inner loop, every s € S is put on the queuc at most once and |6(s, a)| < 2.

Extensions:

If we are looking for a pattern L, in the middlc of tezt, first replacc a by Z'a.
How to find the left end(s) of pattern(s), L., is left as a homework problem.

Better upper bounds can be obtaincd for some special forms of a. For more information see [KMP77]
and [FiP74].

6.3. Automata Recognizing Substrings.
Consider for now problem 1, that of finding the first (all) occurrence(s) of pat as a substring in Zexzt.

This is an instance of the previous problem where the regular expression « is an clement of £°. Consider
the “'skcletal machine”, M/,

pat:
X-p P P2 P3 Pm
>~ o S -
89 L)1 83 8 8m

VLMY Teeaey e L SR

- e v § —— ————— P S——

e e e o ——r————

30 6. PATTERN MATCHING IN STRINGS

General idea:

M, reads t,,,,... in state s, until the first ¢; = p, is encountcred. Then, M, changes state to
8. Supposc that after having read fezt, ., M}, is in state s;. This implies that

te:nt.,_,-“,. = pat,,,-, and

tcztg_,':.’_l'k # pat,,,w, ifj' > j.

Now M7, reads £y ,,. Iftsy1 = pj,. then M}, changes state (o 854, and iterates. If¢x. 7# Pis1s
then there can be no complete match at position k — 7 + 1. That is

tezty_jy1k—j+m 7 pat.

We may therefore try a match at a later position by shifting the pattern sh(j, tx,,) positions to the
right. Sometimes, sh(j, t,+1) can be greater than one, since we know that tezti_j,,,x = paty ;. In fact
we can definc

sh(j, tiy1) := min{s > 0; textyypjrt ktt = patl,j—l+l}-

«— s ——> | p “ee Pi—s Pi-st1
[m oo Pet1 .- P;i Pi+s
text l tg_j.’.l o tk+0—j+l e en tk tk+|

This is always defined since if 8 = j + 1, texty 2 x41 and pat,o arc empty. For M, this

corresponds to reading 4., and going from state s; to state 8;_,4 if txyy 7% pjya. It is possible to
build the shift function into M!,_,. obtaining a DFA, M, with O(m) states and O(m|L|) edges.
It turns out that, it takes time O(m|%|) time to construct sh, hence

Theorem:

We can detcrmine whether pat is a substring of tezt in time O(m|X| + n).

If ¥ is large the time to set up the machinc might be significant. This lcads to the question: is there
an algorithm that is indcpendent of |E)?

6.4. The Knuth-Morris-Pratt Pattern Matching Algorithm.

. To become independent of ||, we make sh independent of T and construct a new machine M,,.
8h'(j) := min{sh(j,0);0 € £ — p;1n}.
Note that if |Z| < 2 the probiem is silly. Therefore,

sh'(5) := min{s > 0; pat,,.; = pat,;—, and pj11 7 Pj—ss1}

If 5 < s then pat, ;_, and pat,,, ; are cmpty and equality holds. If 8 = j + 1 then both conditions
are vacuously satisfied, This means that 0 < sh'(j) < j + 1. If we build sh’ into M,,., we might, after
going from statc s, to state s,_,, still have a mismatch p;_,1 5 ti41. In this case it is nccessary to
iterate by reducing the state s;_, according to sh’. This gives the following program:
ji=0; k:=0;
whilt j<madk <ndo

while 5 > 0 and, .y ths1 7 Pjsr dO

e - it = s d— —n

I IRE N

6.5. TIHE BOYER-MOORE STRING MATCHING ALGORITHM. 31

begin
co and.,.¢ means that the second operand will not be evaluated unless the first operand is true oc;
= j— sh'(j);
k:=k+1;, j:=3+1;
if j = m thea “match encountered”

end.
This is the basic Knuth-Morris-Pratt algorithm. It can be rcfined in several ways. For details s :
{KMP77}.

We now want to see how to construct the shift function. The basic obscivation is that if
sh’(0), sh'(1),...,sh’(j — 1) are known, it is casy to compute sh'(j). For the following prog
to computc the shift function, it is useful to recall that
8h'(j) := min{s > 0; pat,;_, = pat,,1,; and Py # Pj_csi}
and to consider the following figure:

“— 5 —=|_m e Pi-a-t Pi-e Pi-st)
= — = #
L_» Pit+t Pi-\ Pi Pi+1

The following program computes sh'(3):

co we shift the upper copy of the pattern to the right by whatever amount is appropriate oc
sh’'(0):=10; s:=1; j:=1;
while j < m do
begin
while s < j andcond P; 7% Pj—. do
a:=s+8h(j—s—1);
il P41 = Pj_.ss1 then sh'(5) := s + sh'(j — 8) else sh'(j) := s;
Ji=13+1
end.
Whenever the inncr loop of the algorithm is executed, s increases. But s is boundeu from above by
m -+ |. The variable j increases once each time the outer loop is cxccuted and is bounded from above
by m. Therefore, this algorithm has time complcxity O(m). Similarly it holds for the main algorithm
that whenever the inner loop is executed, 7 is decrcased. But j is always at least -1 and is increased at
most n times by 1. Therefore the total time for the algorithm is O(m + »).

6.5. The Boyer-Moore String Matching Algorithm.

The Boyer-Moore algorithm [BoM77] uscs the same basic idca as the KMP algorithm, but it compares
the pattern against the text starting at the right end of the pattern and is thus often able to skip more
rapidly over a part of the text that can not possibly contain a match. Two guiding rules are used to
dcterminge the shift:

a) if the next character in text to be compared is ¢, determine the rightmost position (default 0) where

t occurs in pat;

b) choose s > t minimal such that :

Pj -s Pi-s+1 e Pm—e—1 Pm—s . [Pm]
= = = .
Pi Pitt eee P Pm | «—— § ——=
;é o= = =
beomyi Eh-maier .. ti iy 7991

I

£
{
4

e a e Wt aD AR g0
N

4 3 —————

N

32 . 6. PATTERM MATCHING IN STRINGS

It can be proved that with this shifting strategy, the Boyer-Moore algorithm has worst-case complexity
(if no occurrence of the pattern is found) of O(r). For a proof see [KMP77, GuO80].

On the average, the algorithm preforms much better. In this case the average is based on the
assumption that all text strings of a given length are equally likely. Assume that g := |E| is rather large,
and let r := 2 log, m|. Thus the probability that some feztx_,1,x occurs in pat is at most

m-r+1

T .

because there are ¢° equally likely possibilities for tezt,,_,,, and at most m — r + 1 of them occur
in the pattern. If a match occurs, we need O(m) steps to find all the matches in positions k — m + 1

through k — 7, and have shifted the pattern by m — r. If there is no match, we can shift the pattern by
m — r immediately. Hence the average time complexity is

o=l om (- =57

m-—r
nlog, m
=0
m

6.6. Space Efficient Linear Pattern Matching.

on a random text.

The pattern matching algorithms discussed so far use auxiliary space of size {2(m) to store the values

of the shift function. We now investigate a string matching algorithm (also of lincar time complexity)
that needs only a constant amount of auxiliary storage. Contrary to the KMP algorithm this algorithm
must be able however, to read the input tapes (for the text and the pattern) in both directions. The
algorithm is based on properties of repeating patterns in strings. We shall first give some definitions and
basic lemmata, and we assume in the following that & is some fixed positive integer > 4.

Definition:

a) A string z is a period of a string w if w is a prefix of some 2™ (i.c., iff w is a prefix of zw).
b) For every p < |w|, we set
reach,(p) := max{q; w,, is a period of w, 4}.
¢) A string z is basic if it is not of the form 2’* for any 2’ and & > 1.
d) A string z is a prefix period of w if z is basic and 2z* is a prefix of w (i.e, reach.(|z]) > k|z|).

Periodicity Lemma: If jw| > p; + p2 and w has periods of length p, and ps 5 p, then it also has a
period of length ged(py, ps).

Proof: Assume without loss of generality that pa > py. AS Wy, _p, 41,05 = Wpy41,p24p, ANA Wy, 41, 1] =
W |wj—p, Decause w has a period of length py, and as wy, 41, w) = Wj,jwj—p, Decausc w has a period
of length p,, we also have wy, —p, +1,jw] = W,jwj—(pa—p:)» a0d hence w has a period of length py — p,.
Iterating this argument as in Euclid's algorithm we obtain the lemma. |

Corollary: If z and 2’ are prefix periods of w, with |2'| > |z|, then || > (k — 1)}2].

Proof: Assume to the contrary that || < (k- 1)]z]. Then wy . has periods 2z and 2’ and length
> |z| +|2’|. Hence by the Periodicity Lemma, z or 2’ cannot be basic. But this contradicts the definition
of prefix period. “ |}

¢ b ————

D

6.6. SPACE EFFICIENT LINEAR PATTERN MATCIIING. 33

Decomposition Theorem: Each pattern pat can be decomposed pat = uv such that v has at most one
prefix period and [u| = O(shi ft,([v])) where

shift,(j) ;= min{s > 0;v,4y; = v;;,}. forj =1,...,]v|.
Furthermore, such a decomposition can be found in time O(m).

We postpone the proof of this Decomposition Theorem for the moment and first show how the
space efficient string matching algorithm works. Basically, it checks for occurrences of the pattern suffix
v in the text, and whenever it finds one naively checks for u to the left of it (here the algorithm has to
back up the reading heads on the input tapes). The algorithm uscs the properties of v in shifting the
pattern (suffix) in case of a mismatch by an amount which is basically a fixed portion of the length of
the matched prefix.

algorithm pmatch(tezt, pat);
begin
co k is a fixed integer > 4 oc;
co for the sake of simplicity we assume that, for j = |v| + 1, v; produces a character which does not
occur at all in text oc;
decompose pat = wuv as stated in the Decompostion Theorem;
1= |u}; j:=0;
while i < n— |v] and 7 < |v] do
if t,'+j+| # Vsl then
begin
case v has a prefix period (of length 7) of
false: begin 7 := ¢ + max{1,[7/k]}; 7 :== 0 end;
true : if kr < 7 < reach,(r) then
begini:=it+r,7:=j5—7end
else
begin @ := 1 + max{1,[j/k]}; 7 := 0 end
end .
else
begin
=7+ 1;
ifj = |v| and.ond tezt.--h,(“,.' = u then
“match found at position ¢ — |u| + 17
end
end pmatch.

Proof of the correctness of the algorithm:

Again it is appropriatc to imaginc that the pattern (which, in this case, is the suffix » of the original
pattern pat) slides on top of text to the right. I fext,,, ;,; matches v, ; and a mismatch occurs in the
next position we can, without possibly missing a match in between, shift the pattern she f¢,(5) positions
to the right where ski ft,(7) is as defined in the Decomposition Theorem:

shi ft,(7) := min{s > 0; vyy1; = v15-4}

In the following we show that in the algorithm pmatch the pattern is always shifted a distance <
shift,(7) and hence that no occurrence of v in tezt can be missed. ’

Assume first that v has no prefix period. Then the algorithm always shifts the pattern (in casc of a
mismatch) by max{1,[5/k]} where j is the length of the prefix of v which matches the text after the
position given by the current valuc of <. In order for the algorithm 1o be correct (in this casc) we must

e

RS TR

'

T Bm e i e e e —— e —

u 6. PATTERN MATCHING IN STRINGS

have j/k < shift,(j). If we assume to the contrary that k > k- shift,(j) then clearly (vy snise.(5)*
would be a prefix of v, ; contradicting the assumption that v has no prefix period.

Now assume that v has a prefix period of length r > 1. If kr < j < reach,(r) then certainly
shift,(j) > r because shift,(j) < r would imply as above that v had a (second) prefix period of
length < shift,(5) < r. If j < kr then shift,(5) < j/k again would imply a second, shorter prefix
period. If j > reach,(r) assume again that shift,(j) < 7/k. Then vy .nise,(;) is a period of vy ;.
Hence there is either a sccond prefix period for v, or j < reach,(r), both contradicting our assumptions.

Hence the algorithm is correct. |

Analysis of the running time of pmatch:

As long as we do not count the time for the decomposition of pat and for the checks text_juj41,i =
u, the integer quantity

(k+1)i 4+

increases every O(1) steps (this is clear as (k + 1)(s + [5/k]) > (k+ 1) + (k+ 1)5/k > (k+ 1)i + 7).
But this quantity is bounded by (k + 1)n + m = O(n + m). Each time an occurrence of v is discovered
in the text, the algorithm naively checks for u to the left of it using additional time O(|u}) (if for this
test it is nccessary o first reset the input heads |v| positions this time is going to be accounted for in
the O(n + m]) time to find all occurrences of v). But v can be found at most n/shift,(|v|) times in
text. As ju] = O(shift,(|v])) the total time for these tests is O(n). Together with the bound for the
decomposition of the pattern as stated in the Decomposition Theorem, we obtain the

Theorem:

The algorithm pmatch finds all occurrences of pat in tezt in time O(n + rn) and uses only a fixed
number of (auxiliary) memory cells.

Let us finally sketch now a proof for the Decomposition Theorem.

As in the computation of the shift function for the KMP algorithm we match pat against itsclf. We
actually run pmatch with pat = tezt and initially v = pat and u the empty string. Whenever we
incur a mismatch p;,; 7 pi4j+1 we shift the upper copy of pat by max{1,[j/k]} until for the first
time 7 = ki holds. Up till (but not including) then no prefix period has been found so the shifting
just indicated is correct as we have argued in the correctness proof for pmatch. When j reaches ki
for the first time then z := pat,; is the shortest prefix period of pat. We now check whether pat
has a second prefix period (whose length then must be > (k — 1)r, by the Corollary to the Periodicity
Lemma). Note that after 1 + j reaches reach,a(r), j gets decreased to zero. We continue pmatch with
the shifting done as stated in the algorithm for the case where the pattern has a prefix period of length
r := |z| until for the sccond time j equais (k — 1)s. If instead we rcach the end of pat then there is no
second prefix period and we can set v :== pat and |u] = 0. Otherwise the length of this second prefix
period of pat must be greater than reach,,(r) — r, by the Periodicity Lemma. We now cancel the initial
{reach,ae(r)/r] — k + 1 copies of z from both copics of pat. After this, z is no longer a prefix period
of the remainder pat’, and it follows again from the Periodicity Lemma that pat’ cannot have a prefix
period shorter than reach,,,(r) — r. Hence the absolute position of the pointers ¢ and j in pat’ does not
change with respect to pat by the dcletion of the prefix. Hence we can iterate the above process.

Note that in one itcration the length of the deleted prefix is at most the length of the next longer
prefix period. Thercfore, the proportion of the total length of the cancelled prefixes to the length of the
last prefix period is bounded by 1+ 1/k+ 1/k* +... < 2. As certainly shift,(|v]) is not less than the
length of this last prefix period (v is of course the last pat’!) we obtain ‘

lul = O(shift,(|v]).

Finally we remark that this decomposition algorithm, for the same rcasons as the main algorithm
pmatch, runs in time O(m) and uscs only a fixed number of auxiliary memory. For more dctails and an

oA e ey e — i+ ey e - et

D v p——— - -

oo

6.7. POSITION TRRES. 35

implementation of pmatch on multitape Turing machines, which runs in real-time, the reader is referred
to {GaS81}.

6.7. Position Trees.

Another way to solve practically all of the problems mentioned in 6.1. is to use a data structure
called position trees , also called prefix, suffix, or bi-tree [AHU7T4, MaR80, McC76, Wei73). Basicaily, for
every position ¢ in tezt the shortest prefix p; of text, , is determined which uniquely identifies position
t. This means that whenever text is decomposed into up,v then u must be text, ;_,. The cxistence
of such a position identifier can be guarantced by appending to text a special endmarker which does
not occur clsewhere. The position identifiers p; are then stored in a tree whose leaves arc in one-to-one
correspondence to the positions of text, and which also contains non-tree cdges (also labelled with
clements from the alphabet) encoding the shift function. It is pretty straightforward (though tedious) to
construct position trees (respectively a compacted variant thercof) in linear time and space when reading
text backwards. One of the references also gives an cfficient construction for the case when fext has to
be read on-linc from left to right. For more dctails sce the refererices given above.

Chapter 7

Searching Graphs and Applications

7.1. The Labelling of Trees.

For the systematic search of trees it is often useful to attach to the nodes numbers or labels which
give some information about the position of a node in the tree. Of course there are many ways to specify
positions in trces or graphs. We shall discuss the following standard labellings of rooted or directed trees
(note that there is no essential difference: a directed tree is necessarily rooted, and a rooted tree can, in
a unique way, be made directed):

— preorder numbering;

- postorder numbering;

- inorder numbcring for binary trees;
- level numbering;

- descendant numbering.

We now specify thesc numberings in turn, by giving short pieces of programs which gencrate them.
The variables and data structures used should be self-explicatory.

(a) procedure preorder(node: v);

begin .
num = num + 1; pre[v] := num;
for all w € sons[v] do preorder(w)

end;

num := 0; preorder(root);
Hence, whenever w is a proper descendant of v, then prefw] > pre|v].

(b) procedure postorder(node: v);

begin
for all w € sons[v] do postorder(w);
num = num + 1; post[v] := num
end;

num := ; postorder(root);
Hence, whenever w is a proper descendant of v, then post|w] < post[v).

(c) proccdure inorder(node: v);
begin
if v has a left son w then inorder(w);
num = num + 1; infv] := num;

e BRI TS Tae——e——————— s T T T

7.2. SEARCH IN GRAPHS. 37

if v has a right son w’ then inorder(w')
end;
num := 0; inorder(root);

Note that in binary trees there is a distinction between left and right sons. Let w be a descendant
of the left son of v, and w’ a descendant of the right son. Then we have
in[w] < infv] < infw'].

(d) procedure level(node: v);

begin
for all w € sons(v] do
begin
lev[w] := lev[v] + 1; level(w)
end
end;

lev[root] := 1; level(root) co another variant scts lev{root| := 0 oc;

It is obvious that lev[v] cquals the number of nodes on the (unique) path from the root of the tree
to v. ’

(c) procedure descendants(node: v);

begin
for all w € sonsv] do descendants(w);
des[v] := 1 co v is considered a descendant of itself oc;
for all w € sonsv] do des[v] := des|[v] + desfw)
end;
descendants(root),
. Clearly, des[v] counts the number of descendants of the node v.

There are many (more or less trivial) rclations between these numbcrings. As an example we state
(and lcave the proof as an casy cxcrcise) the following

Descendants Lemma: f.et v and w be nodes in a (rooted) trce and assume that the preorder and
postorder procedures visit the sons of every node in the same order. Then the following four conditions
arc cquivalent:
- w is a descendant of v;
- prefu] < prelu] < prefv] + desfo];
- post|v] — des[v] < post|w| < post[v];
- pre[v] < pre[w] and post|w] < post[v].

Hence we might note as a corollary that pre and post together uniquely determine the structure of
the tree.

7.2. Search in Graphs.

! Many search problems on graphs contain or are special variants of the following general problem:
“Scarch all edges of a graph G = (V, [}, number the nodes in some order from-

1 through n = {V/|, and find a spanning forest (i.c., a sct of disjoint trees with
edges from /2 which contain all nodes in V') for the graph.”
For this gencral problem, we give the following skelcton of an algorithm (formulated for the case of
an undirected graph; the generalization to digraphs is straightforward):

bbb ieri) &

A e c e e e, — e~ s g e

38 7. SEARCHING GRAPHS AND APPLICATIONS

while there is an unnumbered node left in the graph do
begin
select an unnumbered node k;
select (if there is one) an cdge e between a numbered node and k, add it to the forest and perform
actions_on_forest_edges(e);
for all other edges e’ between numbered nodes and & do
actions_on_non-forest_edges(e’);
number k with the next available number
end.

If we now fill in the particular rules for the selection of the node k and the edge e, we obtain a
variety of graph searching methods. Some of the most important are listed below, together with their
selection criteria.

BFS (breadth-first-search). :
select the node k and the edge e such that the other endpoint of e has the lowest possible number.

DFS (depth-first-search).
select the node k and the edge e such that the other endpoint of e has the highest possible number.

TS (topological search):
select a node k with a minimal number of edges from unnumbered nodes; select e arbitrarily.

MCS (maximum cardinality search):
select a node k with a maximal number of edges from unnumbcred nodes; select e arbitrarily.
We shall discuss applications of these search methods for graphs in the sequel.

7.3. Connectivity.

An undirected graph G = (V, I£) is connected if for any two nodes v,w € V there is a path in G
from v to w. A directed graph is callcd connected if its undirected variant is connected. It is obvious
how to use DFS or BFS in order to dctermine the connected components (i.e., the maximal connected
subgraphs) of a graph.

7.3.1. Biconnectivity.

Assume that G = (V, E) is a connected undirected graph. We want to know whether G can become
disconnected if we just remove one of its nodes (and the edges incident on that node).

Definition:

A nodec a € V is called an articulation point of G if there are nodes v, w € V different from a such
that cvery path from v to w passcs through a. A (connccted undirected) graph G is called biconnected
if it has no articulation point.

Obviously the removal of an articulation point from a graph disconnccts the graph. More general
we could be interested in how many nodes it takes to disconnect a graph, The minimal number for this
is called the (node) connectivity of the graph. Hence a connected graph with no articulation point has
connectivity > 2, it is biconnected.

Lemma:

{a) G is biconnected iff any two distinct of its edges lic on a common simple cycle.

(b) The property of lying on a common simple cycle gives risc to an cquivalence relation in the cdgc sct
E. lts classcs are called biconnected components, and their induced subgraphs blocks.

[TR

7.3. CONNECTIVITY. 39

Proof: The proof for (b) is immediate, and the proof of (a) is given as a homework problem.

Lemma:
Let G; = (V;, E;) be the blocks of G.
(@ Forallizj [VinV;{< 1.
(b) A node a is an articulation point iff a € V; NV}, for some ¢ 7 j.

Proof: (a) Assume that for some ¢ £ j there are two distinct nodes v and w in V; N V;. As G, and G;
are both connected there are simplc paths from v to w wholly within G, respectively G; and hence edge
disjoint (remember that the E; form a partition of E). But it is obvious how to construct from these two
paths a simple cycle containing cdges both from E; and E;. Contradiction.

(b) If a is an articulation point then therc are (necessarily distinct) v, w such that every path from
v to w passes through a. As G is connected there is at least one such simple path. Let z and y be
the two nodes on this path next to a. Then the edges {z,a} and {y,a} must necessarily be in two
different biconnected components because otherwise, by the previous Lemma, there would be a simple
cycle containing these two edges. and a could not possibly be an articulation point.

On the other hand, if a € V;NV; for some 1 3 7, then there are cdges {z,a} € E, and {q,y} € Ej,
and every path from z to y has to pass through a becausc otherwise there would be a simple cycle
containing these two edges which would contradict the fact that they come from distinct biconnected
components. But then a is an articulation point. [

We can think of a DFS being implemented recursively in the same way as the preorder labelling
routine, and we say that.a’ DFS visits a node v whenever the instance of the recursive search procedure
for node v is active. .-

If we perform a depth-first-search on a connected undirected graph G = (V, E') we obviously obtain
a spanning forest corsisting of one tree T = (V,E’). We also make the following basic obscrvation
about the nos-tree edges in E — E’, from the definition of DFS:
~ Every non-tree cdge {v,w} (encountered when visiting v in the DFS) is a back-edge, ie., w is an

anc;s(or of v in the tree constructed so far (and hence also in T).

Athis fact permits us the following notational convention: an edge {v,w} € E is written v — w if it
i3 2 trec edge and w is a descendant of v in the tree, and it is written ¥ w if it is a back-edge from v to
its ancestor w. We also write ¢ w for the (possibly cmpty) path from v to its descendant w in the tree.

Having in mind that all non-tree edges of G arc back-edges and that the removal of an articulation
disconnects G we immediately obtain the following characterization.

Lemma: .

Let G = (V,E) be a connected undirected graph, and T = (V, E’) a DFS-wree of G. A node
a € V is an articulation point of G iff either
(a) a is the root of T and has morc than one son; or

(b) there is a son s of a such that no descendant of s (including s itself) has a back-edge to a proper
ancestor of a. .

Proof: It is clear from the observation stated above that a is an articulation point if either one of the
two conditions in the Lemma holds. Now assume that a is an articulation point in G. If a is the root
of T and has only one son then G does not become disconnected if we remove a and its incident edges
because all remaining nodes are reachable in the tree from this onc son. Also, if @ is not the root of T
and cvery son of a has a descendant with a back-cdge to a proper ancestor of a then the removal of @
and its incident cdges clearly does not disconnect G and a-is not an articulation point.

Hence, if we define the following labeling for the nodes inv e V

low[v] := mip{pre[z],pre[w]; Pz w},

IRTTIES

40 7. SEARCHING GRAPHS AND APPLICATIONS

where of course the preorder numbcring is the one given by the DFS, we obtain the following

Corollary:
A node a different from the root is an articulation point iff low([s] > pre|a] for a son s of a in T

f It is immediate to transform the definition of low into the following local form:
low[v] = min{pre[v], pre[w), low[s]; ¥ w, s son of v},
which we can use to determine the biconnected components of G.

algorithm biconnect;
begin
procedure search(node: v);
begin
num := num + 1; pre[v] := num; low[v] := num;
for all cdges {v,w} incident on v do
co we assume that all these cdges are given in an adjacency list of v oc
if pre{w} = 0 then
begin co w hasn’t been visited yet in the DFS oc
push {v,w} onto stack;
Jatherjw]:==v
co this information is needed to distinguish the tree edge by which w was entered oc;
search(w);
if low|w)] > pre[v] then
begin
declare v an articulation point if it is not the root of the DFS-tree or if it is the root and has
at least two sons;

i pop all edges from the stack up to and including {v, w} as a new biconnected component

end;
low[v] := min{low[v}, low[w]}

end

else

if w 7% father[v] then low[v] := min{low{v], pre{w]}

od
end search;

initialize stack; num := 0; for all nodes v do prefv] := 0;
search(root)
end biconnect.

We only remark that the algorithm biconnect as it is formulated automatically determines the
biconnected components containing cdges from the root of the DFS-tree because the condition low[w] >)
pre|root] (= 1) is trivially satisfied whencver in search(root) a search(w) for a son w of the root has .
been performed. :

! Theorem:

The algorithm biconnect determines the biconnected components and articulation points of a connected
undirected graph G = (V, E) in time O(|E}).

Proof: It only remains to verify the given time bound. But this is clcar as the DFS visits every edge at
most twice (once in every direction). §

o

— e 1 < n

7.3. CONNECTIVITY. 4]

Remark: A biconnected component consisting of a single edge is sometimes called a bridge.

7.3.2. Strongly Connected Components,

Let now G = (V,E) be a directed graph (without multiple edges). Call two nodes v,w € V
equivalent if there is "a (directed) path in G from v to w and one from w to v (it should be clear that
the relation among the nodes of G such defined is in fact an equivalence relation).

Definition:

The subgraphs induced by the equivalence classes defined by the above relation are called the strongly
connecled components (SCCs) of G.

Note that SCC’s are subgraphs induced by subsets of the node set of the (digraph) G (and hence
we shall say that we have determined an SCC if we have determined its node set) whereas blocks in
undirected graphs are given by subsets of the edge set (and hence we determined blocks by determining
biconnected components).

If we perform a DFS (together with preorder numbering) on a digraph we obtain four kinds of edges:
~ tree edges which are part of the spanning forest constructed by the DFS;

- forward edges v — w which arc non-trec edges with pre[v] < prefw];

- back edges v — w where w is an ancestor of v in the DFS-forest (and hence of course prefw] <
prefv]);

~ cross edges v — w which arc edges with pre(w] < pre[v] such that w is not an ancestor of v (but has

been visited before in the DFS; » and w may cven be contained in different trees of the DFS-forest).

Definition:

Given an SCC C of G = (V, E) and a DFS-forest of G, we define the root of C 1o be the vertex
r of C with minimal preorder label.

It is immediate from the definition of the DFS routine that, if = is the root of C, the DFS visits all
nodes of C between its first and last visit to r.
L.emma:

A node r is the root of an SCC iff therc is no back edge from a descendant of 7 to a proper ancestor

of r and if there is no cross edge from a descendant of 7 10 a node w such that the root of w's SCC is
a proper ancestor of r.

Proof: The proof follows immediately from the above remark and the observation that whenever one of

the conditions in the lemma is not satisfied a node in r’s SCC different from r has been visited before
by the DFS. |}

Again it is possible to define a labelling of G which captures the criterion of the Lemma:

Definition:

Lowlink{v] := min{pre[w]; w can be reached from v via zero
or more tree cdges possibly followed by a back
cdge or a cross cdge to a node the root of whose
SCC is an ancesior of v},

Hence the above Lemma translates into
r is the root of an SCC iff Lowlink(r] = pre]r).

s Y

RS 1

H

Py

42 7. SEARCHING GRAPHS AND APPLICATIONS

And we also get a local, recursive formulation of the definition of Lowlink:

Lowlink|v) := min{pre|v), prejw), Lowlink|s]; s is a son of v,
v — w is a back edge, or v — w is a cross edge
' and the root of w's SCC is an ancestor of v}.
algorithm scc;
begin
procedure search(node: v);
begin
num := num + 1; pre(v] := num; Lowlink[v] := num;
push v onto stack;
for all edges v — w do
co we assume that all these edges are given in an adjacency list of v oc¢
if pre[w] = 0 then
begin co w hasn’t been visited before oc
search(w);
Lowlink[v] := min{Lowlink[v], Lowlink|w]}
end
else
if 0 < pre(w] < pre[v] then
co we set pre[w)] ncgative as soon as w’s SCC has been completely determined; so here v — w
is either a back edge or a cross edge with w still on the stack and the hence the root of w's
SCC a proper anccstor of v oc
Lowlink{v] := min{Lowlink|v}, pre[w]}
od;
if pre[v] = Lowlink[v] then co v is the root of a new SCC oc
pop all nodes on top of and including v from the stack and negate their preorder label
end;
initialize stack; num := 0; for all nodes v do pre[v] := 0;
while there is a node v with pre[v] = 0 do search(v)
end scc.

Note that the while loop is nccessary here (diffcrent from the case where the DFS was applied to
a connected undirected graph in the algorithm biconnect) because for a digraph wiiich is not necessarily
strongly connected, DFS produces a spanning forest which may contain more than one tree,

Theorem:
The algorithm scc determines the SCC's of a digraph G = (V, E) in time O(|E}).

Proof: Again the correctness of the algorithm is obvious from the characterizations given before. And
the time bound can be seen from the fact that in a digraph, DFS visits cvery cdge cxactly once. I

7.4. Planarity Testing.

7.4.1. Planar Graphs.

A finite undirccted graph G = (V, E) is called planar if it can be drawn in the plane (or on
the surface of a three-dimensional sphere) without any cdges crossing onc another, i.c., the edges are

L

7.4. PLANARITY TESTING. 43

-

represented by connected. finite length curves, and any point common to more than one such curve must
represent a node of G incident on the corresponding edges. A drawing of a graph (in the plane or on
the sphere) is called plane if it satisfics the above planarity condition.

Planar graphs have been studicd extensively in the past, both for theoretical and applied purpuses.
We only refer to the huge amount of work that has come from the investigation of the famous Four

Color Problem [BeW78]. There is also a strikingly simple, classical characterization of planar graphs as
given in the following

Theorem (Kuratowski, [Kur30]):

A graph is nonplanar if and only if it contains a homeomorphic preimage of K or K33,

Remark: Ky is the complete graph with 5 nodes, and K, ; is the complete bipartitc graph with 3
and 3 nodes: :

st K;;Z

AT
& \

A homeomorphism is a continuous (in the topological sense) mapping. Here, a graph is considered as

a manifold consisting of finite length curve segments whose intcrsections exactly represent the incidence
relation of the graph.

For a proof of Kuratowski’s Theorem we refer to [Eve79].

Though Kuratowski's criterion is very simple there scems to be no obvious way to turn it into an
efficient algorithm for testing planarity of a given graph. Before we develop a, in fact linear, algorithm
for this problem let's first consider a few more properties of planar graphs.

Every drawing of a graph in the plane (or on the surface of a spicre) defines (topologically) connected
components which are the picces left over when we cut along ail the line scgments representing the edges.
For a plane drawing of a graph, thesc connccted components are called faces. Note that a (finitc) plane
graph has exactly one unbounded face, the outer face, while all the other, inner faces are hounded.

Theorem (Euler, 1736):

Let G be a nonempty, connected plane graph with n nodes, e edges, and f faces. Then the following
relation holds:

n+f—-e=2.

Proof: We prove the formula by induction on e. If e = 0 there is exactly one node as G is noncmpty
and connected, and hence there is exactly one, the outer face, and the formula holds. Assume the formula
holds for all plane graphs with less than e edges, for some e > 0. From a plane graph with e cdges,
take away one cdge such that either thc graph remains connected or, if it becomes disconnected, one
component consists of a singleton node. This can always be achieved. In the first case obviously the
number of nodes remains the same whereas the number of faces decreascs by one (note that the faces
on the two sides of the delcted cdge must have been different; otherwise, as a face is (topologically)
connected. we could draw a closed line around onc of the endpoints of the deleted edge without crossing
any edge contradicting the fact that the graph is still connccted). and by induction the formula holds. In
the sccond case, we apply the induction hypothesis to the other connected component left after the edge

4 7. SEARCHING GRAPHS AND APPLICATIONS

deletion. If we add to it the deleted edge and its second endpoint we do not change the number of faces '

while increasing the number of nodes and the number of edges each by one. Hence the formula also
holds for plane graphs with e edges, completing the induction. |

As a consequence of Euler's formula, every planc drawing of a planar graph has the same number
of faces. .

Coroltary:
Every planar graph without self-loops and paralle] edges, and with n > 3 satisfies
e<3n-6.
Proof: Each side of an edge in a plane drawing of a graph tcuches only one face. As there are no self-loops
and parallel edges the boundary of each face is formed by (one side of) at least three edges, and hence we
obuin f < 2¢/3. If the graph is not connected we may add edges without destroying its planarity such

that it becomes connccted. Hence we can use Euler's formula and obtaine =n+ f —2 < n+2¢/3 -2
from which wegete < 3n—6. |

Corollary:

Every planar graph without self-loops and parallel edges has a node with degree at most 5.

Proof: If we assume the contrary we obtain 6n < 2e (cvery edge is counted twice, once for each endpoint)’

which contradicts e < 3n—6. |}

If we wish 1o test planarity of graphs we may actually restrict ourselves to biconnected graphs. As
we have seen in onc of the homework problems the articulation points of a graph connect its blocks in
form of a tree. On the other hand it is always possible to draw a planar graph in the plane in such
a way that a specificd node touches the outer face (the easiest way to see this is to look at a “plane”
drawing of the graph on the surface of the sphere where all face: are bounded. If we choose an interior
point of a face adjacent to the specified node, and then project, by a central projection with this point
as center, the surface of the spherc onto a plane tangent to the sphere on the opposite side, we obtain a
plane drawing of the graph with the specified node on the perimeter of the drawing). Hence, if we have
a planar drawing of a block, we can find planar drawings (if they exist at all) of its children in the tree
of blocks such that for each of them the connecting articulation point lies on the outside, and we can
attach these drawings to the drawing of the articulation points in the father block and still obtain a plane
drawing. We therefore assume in the sequel that G = (V/, E} is a biconnected undirected graph without
self-loops and parallel edges (which also could be added later to a plane drawing).

Let C = (V', E') be a (simple) cycle in G, and let " be EN((V = V') X (V - V).

Dehinition:

(a) A connected component of (V — V', E") together with the nodes in V7 linked to this connected
component by an cdge in E — E’ and 1ogcther with these edges is called a bridge of G with respect
to C. The nodes both in C and the bridge arc called the attachments of the bridge.

(b) An edge in E — E' with both endpoints on C is called a singular bridge.

Definition:

Two bridges B and I¥ (of a graph G with respect to a cycle C in G) interlace if
(a) B has attachments a, b, the bridge B’ has attachments ¢, d, all four arc distinct, and they appcar on
C in the order a, b, ¢, d; or if

e s ¢ i o —y = A - o+ A . S AP A Yo o et e et = o+ o ot~ e on

e e s ree————

F;;,,.W N

7.4. PLANARITY TESTINC 45

{b) B and B’ have at least three attachments in common.
Lemma:

Let B,,..., B, be a set of bridges (with respect to cycle C) such that no two of them interlace and
such that C + B; (the subgraph of G given by the nodes in C or B;) is planar, foreveryi = 1,...,r.
Then C + B, +... + B, is planar.

Proof: In a plane drawing clearly every bridge must be drawn completely on the inside or the outside
of (the drawing of) C. Let the nodes on C be in order v,,...,v,,v; and assume inductively that the
Lemma holds for any set of r — 1 (non-interlacing) bridges, r > 1. As the bridges B,,..., B, do not
interlace we can find a bridge B; such that, if v, is the lowest and v, the highest (in the above order of
the nodes on C) attachment of B; no other bridge has an attachment v; with | < ¢ < h. By induction
we can obtain a planar drawing of C + By +... + B;_ + Bjy, + ... + B, (actually with all these
bridges drawn on the same side of C) and also, by assumption, a plane drawing of B; together with
the edges on C between v; and vy, If | £ h we can “squeceze™ the latier into the one bounded face
of the first drawing which has the cdges of C between v, and v, at its boundary, and if { = h we can
insert the plane drawing of B; in any (bounded) face with v; on its boundary and thus obtain a plane
representation of C + B, +... + B,. Hence the induction is complete. 1

Theorem:

Let B,,..., B, be the bridges of G with respect to C. Then G is planar iff

(a) C + B;is planar forevery t,s =1,...,r; and

(b) the set of bridges can be partitioned into two subsets such that no two bridges in the same subset
interlace,

Proof: If we have a plane drawing of G the partition of thc bridges of G into those drawn on the
inside respectively outside of C clearly satisties the condition in the Theorem. The other direction is
a consequence of the previous Lemma where we have in fact shown that every set of non-interlacing
bridges can be drawn on one side of G.

The planarity testing algorithm presented in the next section makes usc of this characterization. It
recursively tests whether C + B; is planar, and trics to partition the set of bridges with respect to C into
two subsets as stated in the Theorem. In order to find C and the bridges a DFS is used.

7.4.2. The Hopcrofi-Tarjan Planarity Testing Algorithm.

Assume that DFS is applicd to G, and that the nodes are rcnamed such that v = pre[v] for every
v € V. We also assume that during the DFS low|v] (as defined in 7.3.1.) has been computed. For.the
proper parsing of G we usc still another labelling of the nodes given by

low2[v} ;= min{v, low|w); w 3 low|v), $ Z w}.

The label low2[v] essentially gives the second lowest node (but at least v itself) reachable from v along a
branch in the DFS tree and a back-edge. Using these auxiliary functions we assign the following weight
¢(v, w) to cvery edge (v, w) of G (the edges are now considered directed according to the DFS):

. 2w if v w;
(v, w) 1= { 2low[w] if v = w and low2[w] > v;
2low[w] + 1 if v — w and low2{w] < v;

and order the cdges in the adjacency lists of G (as the edges arc directed now cach edge occurs in exactly
one such list) in order of nondccreasing weight. Using bucket sort this can be done in linear time,

W .

46 7. SEARCHING GRAPIIS AND APPLICATIONS

Wc now describe an algorithm find_path which first determines a cycle C of G through the root of
the DFS tree, and which then outputs a sequence of simple paths which together form the set of bridges
of G with respect to C. Because of the way in which the adjacency lists of G have been reordered these
paths are generateG in a order which will help us to make efficient use of the planarity criterion of the
last Theorem in the previous section.

algorithm find_path;
begin
co we are given a DFS tree of the biconnected graph G together with the back-cdges; each edge of
G appears (as directed edge) in exactly one adjacency list, and the adjacency lists are reordered as
described above; the nodes are named 1,...,n in the order they were visited in the DFS oc
mark all edges “new”;
vi=1; C:={1};
let v — u be the first (in adjacency list) edge leaving v; mark it “old™;
while » 74 1 do
begin
co as G is biconnected and because of the rcordering of the adjacency lists we are guaranteed to
reach the root again oc
C:=CU{u};v:i=u;
u := endpoint of first (“new”) edge lcaving v;
mark v — u “old”
end;
output the (simple) cycle C,

co note v now is the highest numbered node on C o¢
while v 54 1 do
co as G is biconnccted there is only one tree edge from the root oc
if there is a “new” edge leaving v then
begin
u := endpoint of first “new” edge leaving v;
P := {v,u};]
while v < u co v — u is not a back-edge oc do
begin
= u;
u := endpoint of first “new” edge leaving v
co such an cdge exists because G is biconnected oc;

P:= Py {u}
end;
output next path P
end
clsc v := father|v]

od
end find_path.

It is clear from the propertics of the DFS trce that find~path uses time O(]V|) and first outputs
a simple cycle C through node 1 (the root), and then a sequence of paths P, cach of which is simple
(because it consists of zcro or more “new” tree edges followed by a “new™ back-cdge leading to a proper
ancestor of P’s first node, again because G is biconnected and also because there are no sclf-loops) and
has exactly two nodes in common with previously gencrated paths, namcly its first and last node. We
suminarize the propertics of find_path which we shall usc in the following

———— ——————n——— —

7.4. PLANARITY TESTING. 47

Observations:

(a) Let Pbe f — v— ... — | be a path gencrated by find_path. If v 3£ [then | = low|v), and in
every case ! is the lowcst node reachable from f via a path of the form] v w where ¥ w has not
been included in a previous path (automatically true if f £ v).

(b) Let P, : n 4, Py /; {; be two paths such that P; is generated before P, by find_path, and
assume that f; f,, i.e., that f, is a descendant of f, in the DFS tree (possibly f; = f;). Then
l; < l,. This is an immediate consequence of the fact noted above that the endpoint of a path is
always the lowest point reachable via “new” tree edges followed by a “new” back-edge.

(c) The following property makes use of the auxiliary function low2. Let P, : f —+v— ... — [, and
P,: f— w— ... — | be two paths generated by find_path with the same first and last node
such that again P, is generated before P, and assume that v 7 [and low2[v] < f. Then also
w # [and low2{w] < f. The reason is that otherwise f/ — w would have to come before f — v
in the adjacency list of f, because of the definition of the low2 function and the reordering of the
adjacency lists. :

Lemma:
Let B be a non-singular bridge, and ¢ its largest attachment. Then B is entered via a tree edge
from 1, completely explored before find_path backs up to ¢ again, and all other attachments of B are

back-edges.

Proof: Because every path constructed by find_path terminatcs as soon as a back-edge is encountered,
certainly no node of B which is not an attachment is visitcd before find_path backs up to ¢ and traverses
an edge ¢+ — w belonging to B. As B is non-singular £ — w cannot be a back-edge and hence must be
a tree edge. As B is connected by definition the DFS explores all edges belonging to it before backing
up to i, and hence all the other attachments of B must be back-edges. 1

Lemma:

Assume we have a planc drawing of C + B, + ... + By_,, where B,,...,B,_, are the bridges
explored by find_path so far, and let 1 — ... — j be the first path of the next bridge B = B, output
by find_path. Then B cannot be added to the inside (resp., outside) of C if there is a back-edge of
one of B,,..., Bi_; drawn inside (resp., outsidc) of C and ending in a node & with j < k < ¢.

Proof: Assumc that there is a back-edge cnding in k with § < k < 1, and let this back-edge be part
of Bp, I' < l. Also, let ¢ be the highest numbered attachment of Br. Then, because of the previous
Lemma, we have &' > ¢. If ¢’ > i the bridges B, and By interlace according to the first part of the
definition of interlacing as j,: are attachments of B,, the nodes k, ¢ are attachments of By, all four
of them are distinct and they occur on C in the order j, k,7,i'. On the other hand, if 1+ = ', let
¢ — ... — ' be the first path of B, produced by find_path. Then j' lies on C, and because of
observation (b) about the properties of find_path we know that j* < j. Now we have again two cases.
If 3 < 7 the two bridges /3, and B, interlace as before by the first part of the definition. If howcver
J' = 7 we note that By cannot be a singular bridge because it also has the attachment k, and hence part
(c) of our observations about find_path applies and allows us to conclude that the new bridge B; must
have a third attachment k' with j < k' < i. Dcpending now on whether k = k' or not, we obtain that
B, and B, interlace according to the second respectively first part of the definition.

In any case we have thus shown that under the conditions of the Lemma the new bridge B; would
interlace with some other bridge drawn on the same side of C which is impossible. §

We are now able to describe the final algorithm for planarity testing. After having determined the
cycle C, it proceeds by adding to a planc drawing of C planc drawings the bridges in the order in which
they arc explored by find—path. As at any point the bridges drawn inside and those drawn outside
of C could be swapped, the algorithm tries to draw every new bridge on the inside of C after having

[RN

T e e e —— — t— et ~ oo

43 7. SEARCHING GRAPHS AND APPLICATIONS

flipped bridges drawn carlier and standing in the way to the outside. While f ind_'path is outputting
paths within one and the same bridge the algorithm checks recursively whether this bridge together with
the segment of C betwcen its lowest and highest numbered attachment is planar.

The previous Lemma gave a condition for bridges which cannot be drawn on the same side of C. In
general, drawing onc of such bridges on one side of C fixcs some other bridges to be drawn on the other
side of C or again on the same side. As bridges are detcrmined by the back-edges to their attachments
we can formalize this situation into the following

Definition:

A block of back-edges (to attachments on C) is a maximal set of back-edges such that putting one
of the back-edges (and hence the bridge it belongs to) on one side of C implies the positions of all the
other back-edges (and their bridges).

The planarity testing algorithm maintains two lists S; and S, with the back-edges which are currently
drawn on the inside respectively the outside of C. The elements within each list are ordered according
to nondccreasing value of the end nodes of the back-cdges (actually it is sufficient to kcep the lists of
these nodes which might then of course contain repetitions). Now part of the back-cdges of a block may
be contained in S; and part in S, but within each of the two lists the elements of a block appear in a
nice order.

Lemma:
Let 7 and 7 be the lowest respectively highest numbered attachment of back-edges in some block. If
a back-edge has attachment k with j < k < 7 then this back-edge belongs to the block.

Proof: We are going to prove the Lemma by induction on the number of bridges explored at any moment.
The claim is certainly truc as long as at most one bridge (with respect to C) has been explored (assuming
that it together with C was found planar by a recursive application of the algorithm) because then all
elements in S; (S, is cmpty) belong to one bridge and hence one block. Now assume that bridges
B,, ..., B;_ have been cxplored so far for some [> 1, and that the Lemma holds at the moment before
the first path of the next bridge B, is being output by find—path. Let this path be ¢/ — ... — 7'. As
we may decide arbitrarily to draw B; at this moment on the inside of C (if it turns out to be planar at
all itself) the previous Lemma tells us that all bridges which have attachments k with 3’ < k < 1" and
are currently drawn on the inside of C, have to be flipped to the outside. What is more, all blocks with
such an attachment & are forced to be drawn on the other side than B,. Hence we can combine all the
back-cdges of B, and all edges in blocks with attachments &k between j' and ¢’ as above to form a new
block. If there are only attachments k& with 7' < k < ¢’ from back-cdges on S, their position clearly is
also determined by the position of B, and they belong to the same block as the back-cdges of B;. Hence
we have cstablished the claim of the Lemma for the moment after the exploration of one more bridge,
and thus completed the induction. |

As a conscquence of this l.emma we note that the back-edges belonging to onc block appear
contiguously on the lists S; and S,. As we have to be able to flip whole blocks from one side of C to
the other whenever there occurs a conflict with the first path of a new bridge, we add, for each part of a
block on one of the two lists S; and S,, a pointer from the last element of the block in the list to its first
element. Using these pointers it is possible to combine the sublists of two adjacent blocks in constant
time and also to find the blocks which overlap with a new path.

The algorithm is now straightforward. Whenever find—path outputs the first path I” of a new
bridge we determine in S; and S, the blocks which interferc with the new bridge and hence have to
be combined with it into a new block. We then flip all blocks in §; with attachments between the two
cndpoints of P to S,. If after this swap there arc again conflicting back-cdges on S, (because they were
flipped in from S,) we stop and declare the graph non-planar. Otherwise we insert a special marker in

e — e s o e ne

7.5. SHORTEST PATU PROBLEMS. 49

S, at the position of P's starting point and check recursively whether the new bridge together with the
segment of C between the two endpoints of P (let us call the cycle consisting of P and this segment C’;
it plays the role of C in the recursive step) is planar, using the same lists S; and S,. After the algorithm
has completely expiored the ncw bridge (and determined that it is planar) we still have to make sure that
all bridges of this new bridge with respect to C’ which have attachments to the segment of C between
the two endpoints of P can in fact be drawn on the inside of C” (which they obviously have (o if the new
bridge is to be drawn on the inside of C). This can be done by flipping all those blocks with back-edges
in S, after the special marker introduced before the recursive step. If after this flipping process there are
still (or again) back-edges after this marker we again stop because the graph is non-planar. Otherwise the
algorithm proceeds to explore the next bridge.

Theorem:
The Hopcroft-Tarjan path addition algorithm tests whether a graph is planar in time O(|V|).

Proof: Clearly the initial DFS with the renaming of the nodes and the computation of the auxiliary
functions takes time linear in [V'| if we check during the scarch that in fact |[E{ < 3[V/| (otherwise we
may stop immediately!). Time lincar in |V| is also sufficient for the reordering of the adjacency lists
(done using a bucket sort) and the find_path algorithm because it is essendially another DFS. The total
number of elements in the lists S; and S, is bounded by the number of back-edges, and hence O(|V]).
The union of two blocks can be done in constant time, and as the number of blocks decrcases by one
after each such union, there can be at most O([V'|) such opcrations. Hence we obtain a total time of

oqvi. 1

1.5. Shortest Path Problems.

Suppose we are given a (directed or undirected) graph G = (V, E), a length d(z,y) > 0 for every
edge z — y (if G is undirccted we assume that d(z,y) = d(y, z) for all edges; we also assume for
notational convenicnce that d(z, y) = +oo if the edge z — ¥ is not present in G), and we want to know
the length dis[v, w] of a shortest path between two nodes v and w, ie.,

\4
dis[v,w] = min{z d(zj-1,2;); v=129 > 2 = ... = Z,_y — Z, = w is a path in G}.
=1 :

(Hence, by default, dis{v, w] = oo if there is no path 4 w.)
" Shortest path problems are usually divided into the following categories:
(a) single pair shortest path problem: find the distance between a given pair of nodes;
(b) single source shortest paths problem: find the distance between a given node and all other nodes;
(c) all pairs shortest paths problem: find the distance between every pair of nodes.
It turns out that no algorithm for (a) is known which would not at thc same time essentially solve

problem (b).
7.5.1. Dijkstra’s Single Source Algorithm.

We construct a bigger and bigger set S of nodes whose distance in G from some given node a is
known,)

algorithm singlc_source_shortestpath;
o determine the distance from node a to all v € V' the graph G = (V, I) is given by adjacency lists;
dv,w] > 0 is the length of edge v — w (+oo if not wresent) oc

avd . B e
it &é"_j.:’tll -

il s e -
X 2T

TOTT M T e e e e e — ——

50 7. SEARCHING GRAPHS AND APPLICATIGNE

begin
S := {a}; dis[a] := 0;
for all v € V — {a} do dis[v] := d[a, v]:
while |S| < |V] do
begin .
determine v € V — S with minimal dis{v];
=S U {v}
for all (v,w) withw €V — § do
dis[w] := min{dis[w], dis[v] + d[v, w]}
end
end single_source_shortest_path.

Theorem:

The algorithm single_source_shortest_patn correctly detcrmines the distance from a to every
v €V, in time O(|V|?).

Proof: We only have to verify the correctness of the algorithm, the time bound is immediate.

Whenever |S| < |V is checked, dis[v] is the distance from a to v for all v € S. This is certainly
true before the first execution of the loop. Suppose now that just beft, e some later execution, v € V — 8
is such that dis[v] is minimal, assume that

a— 8 — ... =8 =V ... SV, =V

q
is a shortest path from a to v with s,,...,s, € S and v; & S (note that r = 0 and ¢ = 0 are
possible), and also assume now by contradiction that this path is strictly shorter than dis[v]. But,
if ¢ > 0, the length of @ — 8, — ... — v, is at most the length of the whole path and hence
< dis|v;] < dis[v], contradicting the choice of v. Hence ¢ must be zero and dis[v] is correct because
it was sct to diss,] + d{s,,v] (resp., d[a,], if r = 0) in some carlicr traversal of the inner loop and
because dis[s,] was then correct by the induction hypothesis. I

Remarks:

(a) Using appropriate data structures (priority qucues with update operations) we can implcment
algorithm single_source—shortest_path to run in time O(|E|log|V]) or O(k|E| + k|V|'*+'/¥)
for any positive integer k.

(b) A similar algorithm (though with running time O(|V|®) is possible for the single source shortest
path problem whcre we allow arbitrary edge lengths but no negative length cycles (see homework
problem).

For more information on these cxtensions sce [Joh73].

7.5.2. The All Pairs Shortest Paths Problem

Now suppose we¢ want to compute the length of a shortest path between all pairs of vertices. Let

vy,...,v, be the nodes of G. Suppose the distance between z and y, dz,y] satisfies d[z,y] > 0.

Define c,(-;) to be the length of a shortest path from v; to v; containing as internal nodes only v, with
k' < k. A good algorithm to solve this problem (especially if the graph is dense) is Floyd's algorithm:

- —

|
7.5. SHORTEST PATH PROBLEMS. 51
begin

for all (1, 5) do ¢! :=d[1, 5] co 0 if i = j oc;
fork:=1ton do
for all (¢, j) do .
cs-;) = mm{c(""l),cft e c{'}'”}
end.

To see that this algorithm works it is necessary to observe that every shortest path is simple. It is
then an easy induction on k to show that c(") is the length of a shortest path from 1 to 5 with internal
nodes only v, with &' < k. If v, does not apecar on the shortest path from 1 to j containing as internal
nodes only v, with k¥’ < k then c“‘ = c“‘ Ortherwise, v, appears on the path exactly once.

The algorithm clearly requires O(|V|) time,

7.5.3. Min-Plus Transitive Closure.

The all pairs shortest path problem can also be solved using matrix methods. It is possible to define
a matrix product with other operations in place of addition and multiplication. Specifically we will be
interested in what results when addition is replaced by the minimum operation and multiplication is
replaced by addition, ie., if C = AB then c¢;; = ming{a; + bi;}. If A gives the length of edges
in a graph, i e a;; = dfv;,v;] between nodes v; and v;, then A? using the Min-Plus product
gives the minimal distance along paths consisting of two edges, A® three edges, and so on. Setting
A" = min;5¢ A’ turns out to be well defined. Here, A% is the matrix with 0 on the diagonal and +o0
everywhere else. It functions as an identity matrix with respect to this product. The other powers are
defined by A™+! = AA™ for m > 0. This matrix, A°, is called the (Min-Plus) transitive closure of A.
It is the solution to the all pairs shortest paths problem, if A is the distance matrix. We shail later prove
that the complexity of transitive closure is the same as that of matrix multiplication (to within a constant
factor). It is therefore interesting to look for good implementations of Min-Plus matrix multiplication.
It should be noted that the o(n?) algorithms of Strassen and others for Plus-Times matrix multiplication
will not work because the min operation docs not have a well defined inverse.

There is, however, an O(n®/2) algorithm for this problem using a different model of computation.
This is the decision tree model. In this model different code may be cxecuted depending on the results
of cach comparison. This code will depend on n, the size of the matrix given by the number of rows or
columns it has. The O(n%/?) algorithm is too complicated to be discussed here, so an O(n5/2(logn)'/?)
algorithm will be discussed instcad. Both algorithms are described in more detail in [Fre76).

We wish to compute the Min-Plus product AB, where A = (a,;) and B = (b;;). We divide A
into n X m submatrices, A;. The valuc of m will be determined later. Similarly we divide B into
m X n submatrices, B;. The product, AB is min(A,B, ..., An/mBn/m). If the A;B; have somehow
been computed, computing AB takes n3/m time since there are n/m matrices in the minimum and
processing each one requires O(n?) time.

To compute A, 3, for example, we consider cach 1 < r < 3 < m. For cach such pair we sort the
2n differences ay, — ai, and b,; — b,;, for 1 < ¢ < nand 1 < 5 < n. For all pairs of r and s this
takes O(m?nlog(n)) time. Computing an entry, ¢;; of A(B, is the same as computing the £(1, 7) such
that a;¢ + by; is minimum. Since a;, + b,; < @, + b,; if and only if a;, — a;, < b,; — by, once the sort
is donc determining ¢(Z, 7} can be done in constant time in the decision tree model since it is completely
determined by the result of the sort.

Therefore computing the A, I3, requires O(mn? log(n)) time. If m = n'/?/(log(n))!/? the whole
algorithm takes O(n®/%(logn)'/?) time. If n is sufficiently large it is possible to precompute small
decision trees. This results in an O(n?*(loglog n/ log n)!/?) time aigorithm,

This algorithm also works for, the boolcan, Or-And. matrix product.

Yao and others have proved that under the decision tree model at least 2(n? log n) time is required
to compute the transitive closure. [YAR77)

52 7. SEARCHING GRAPHS AND APPLICATIONS

7.5.4. Boolean Matrix Multiplicalian. Transitive Closure

We now want to prove the equivalence of matrix multiplication and transitive closure as far as
computational complexity is concerned. We will consider the boolean Or-And product here. The proof
will also work for the Min-Plus product discussed earlicr. To aid notation we will denote the additive
operation by “Vv" anu the multiplicative one by “A”. The Or-And product is then ¢;; = Vaa A by
for the ;.ioduct C = AB. To get an intuitive idea of what is going on it is useful to suppose that the
matrices are adjacency matrices. Let A® be the transitive closure of A. Then intuitively, a,; = 1 if and
only if there is a path from 1 to j in the graph.

Let T'(n) be the time to compute the transitive closure of n X n matrices. Let M(n) be the time to
compute the boolean product of two n X n matrices.

Theorem:

If T(3n) < c¢T(n) and M(2n) > 4M(n) then T(n) = 6(M(n)).

The assumptions are reasonable since the first one is satisfied if the transitive closure can be computed
in polynomial time and the sccond is satisficd if matrix multiplication takes time Q(n?).

Proof: First we reduce M, matrix multiplication, to T, transitive closure. Suppose we want to compute

C = AB. Let
0 A O
L=lo0o 0 B
0 0 o
Intuitively, this corresponds to a tripartite graph with nodes z,, y,,2; for 1 < 3 < n, There is an edge
from z, to y; if and only if a;; = 1 and an edge from y; to z; if and only if b;; = 1. There are no
other edges. It is easy to see that
. I A AB
L =10 I B

0 0 I
Therefore M(n) < T(3n) = O(T(n)).
Suppose now we want to compute L°. Without loss of generality we can assume that n is a power

l, == ()
C D)

«_(E F
L“(G 11)'

E=(Av BDCY,

Let

It is then easy to verify that

F=EBD",
G=D'CE,
H=D'VGF.

Consider for example the first equation. Think of L as an adjacency matrix of a graph. Partition the
nodcs into two sets X and Y, so that A is the adjacency matrix for the subgraph induced by X. Consider
a path between two nodes in X', Partition the path cvery time it touches a node in X. Each picce will
cither be an cdge between two nodes in X or will go from a node in X to a node in Y, possibly go to
some othcr nodes in Y and go back to X. In the first casc the path is represented by an entry in A.

7.5. SHORTEST PATH PROBLEMS. 53

In the second case it is represented by an entry in ZD"C. The transitive closurc of (A V BD°C) then
represents all paths between elements of X. Therefore, E = (A V BD"C)", which is what we wanted.

To find L* two transitive closures, six matrix multiplications, and two componentwise V's all on
matrices of size n/2 are necded. Therefore

T(n) < 2T(§) + 6M(;) +c'n?

It is then possible to prove that T(n) < c¢M(n) by induction. The basis is obvious if ¢ is large enough.
By the inductive hypothesis,

T(n) < 2cM(§) + 6M(;—) +cn? < %(2c + 6 + 4c')M(n),
since M(n) > n?. The induction goes through if ¢ > ¢/2+3/2+c'ore > 3 +2¢. |

7.5.5. The Four Russians’ Algorithm for Boolean Matrix Multiplication.

We are now interested in computing the boolean matrix product. The method of section 7.5.3. will
work. Warshall published onc of the carliest algorithms to solve this problem [War62]. It is also possible
to consider the boolean matrices to be integer matrices and use a Plus-Times product algorithm. It will
then be necessary to remember that any nonzero entry is really one. Another interesting method that
lends itsclf to vector operations was published in [ADK70). Suppose we want to compute C = AB. As
with the Min-Plus product we divide A into n X m submatrices and B into m X n submatrices. This
time we take m := nf|logn]. We assume that m|n. Define C; = A;B;.

Then C = V, << Ci and it takes O(n?*m) to compute this. Each row of A; has |log n| elements
and B; has that many rows. Each row of C; is a boolean combination of the rows of B;, given by a row
of A;. For notational convenience consider all matrices to be column vectors of boolean row vectors. It
is possible to compute all of the possible boolcan combinations of the rows of B; in a reasonable amount
of time. The following procedurc does just that:

procedure bcomb(integer: t);
begin
comb[O] =o,..
for j := 1 to 2“°“"J ~14do
begin
p:= |logjJ;
comb(j] := comb[j — 2°] V bii-1)j10g n+p+1
end
end;

This procedure requires O{n?) time. It is used in the final algorithm:

algorithm Four-Russians(array: a, b, ¢);
begin co we assumc that the matrices a, b, ¢ are organized as vectors of rows oc;
const [= |log n};
var comb: array[0..2' — 1] of boolcan_vector;
for i := 1 to n do c[i] := [0,...,0];
for i := 1 to n div { do co wc assume that I|n oc
begin
bcomb(s);
for j:=1tondo

.. gy 2 AN I WNGRIN S AT o 3l B T P T T 1o e st Yt T O, h7 KW 3

LS
(oA DR

s k-

54 7. SEARCHING GRAPHS AND APPLICATIONS

begin
ne :=0;
for k := [downto 1 do
if a[j, k] then ne := nc + ne + 1 else nc := nc + nc;
¢[j] := ¢{s] V comb(nc]

end
end Four-Russians.

The procedure bcomb is called m times. The inner loop is executed nm times. Each iteration
requires O(logn) time to compute nc and O(n) to do the vector “v”. Therefore the total time is
O(n®/|log n]). If we count n-bit vector operations as taking unit time, then bcomb requires only O(n)
time. The vector “V” require only constant time each. It is also possible to read the value of nc as
consecutive bits. So the algorithm requires O(n?/{log n]) vector operations.

7.6. References.

Eve and Kurki-Suonio [EvK77] have another algorithm for determining the transitive closure that
finds the strongly connected components. Their algorithm has worst complexity O]V {®), but is useful
for sparse graphs. An algorithm with average time complexity O(|V|? log|V|) is described in [BFM76),
and onc with linear expected time in [Sch78].

i e 7 b5

Chapter 8

Maximum Matchings in Graphs

8.1. Fundamentals.

In the following we assume that G = (V, E) is an undirected, connected graph with no self-loops
and no paralicl edges. This is no severe restriction because self-loops and parallel edges cannot be part
of matchings as will become clear from the dcfinitions below, and as the problem for scveral connected
components can be solved by treating each connected component scparately.

Definition:

(@) A set M C E is called a matching if no two edges in M have a node in common.
(b) A matching M is called perfect if [V'| is even and [M| = |V|/2.
(c) A matching M is called maximum if there is no matching M*' C E with |M’| > [M|.

Remark: .
A perfect matching is also called a 1-factor.

Definition:

A (simplc) path
V1—Vy—...— Vs
in G is called an augmenting path with respect to a matching M if v, and va, are free, i.e., not incident
to any edge in M, and exactly every other edge of the path is in M.

There are some classical characterizations for whether a matching is maximum or whether a perfect
matching (which is clearly maximum) exists:

Marriage Theorem (Frobenius-Konig-Hall-Rado):

Let E C V; X V; be a relation. E contains a maiching of size |V;| (and hence, if |V,| = [Vq, a
perfect matching) iff .

|E(V)| 2 |V]| forevery V C V;.

Theorem (Tutte 1947):

A graph G = (V, E) has a perfect matching iff |V| is even and there is no £ C V such that the
number of odd size components (i.e., the number of connected components having an odd number of
vertices) of the subgraph induced by V — §, is greater than |S|.

PR

56 ‘ 8. MAXIMUM MATCHINGS IN GRAPHS

Theorem (Berge 1957):'

A matching is maximum iff there is no augmenting path with respect to it.

We are not going to prove the first two theorems but refer the rcader to [Hal48) and [Tutd7]. A
proof for Berge's Theorem will follow as a corollary of one of the lemmas presented in the sequel.
If §,T C E we denote by S @ T the symmetric difference

SQT =(5~-T)u(T - 8).

Lemma:

Let M be a matching, and let P be an augmenting path with respect to M (here we look at P as
the set of its edges). Then M @ P is a matching, and [M ® P| = |M| + 1.

Proof: The second, fourth, ... etc. edge of P is an element of M. Hence, as the first and last node of
P are free, it is clear that M @ I’ is again a matching. And as P contains one morc edge not in M
than cdges in M, the size increases by onc. |

Lemma:

Let M, N be matchings, and let [NV] > [M|. Then N @ M contains at least [N| — |M]
vertex-disjoint augmenting paths with respect to M.

Proof: In the graph G’ = (V, N @ M) every node has degree at most two because N and M are

matchings. Hence every connected component of G’ is either

a) an isolated vertex, or

b) a (simple) cycle with edges alternatingly in M — N and N — M (note that such a cycle must have
even length), or

¢) a(simple) path with cdges alternatingly in M — N and N - M.,

Now let Cy,...,C, be the connccted components of G'. It is clear from the definition of the
symmetric difference that N = M @ C, ® ... ® C.. Let My be M, and set, fori = 1,...,r,
M, := M,;_; @ C;. But in the sequence |Mgl,|M,|,...,|M,! only connected components in catcgory
c) and among them only those which start and end with an cdge not in M (and hence have odd length)
increase the number of matched edges. Now such paths are in fact augmenting paths with respect to M
because, as N is a matching, their first and last node must be frec under the matching M. As every
such path increases the size of the matching by one according to the previous Lemma, there must be at
least | N| — | M| such components and hence augmenting paths. 1

Note here that Berge's Theorem is an immediate corollary to this Lemma.

Lemma:

Let M be a matching of size r, and suppose that the cardinality of a maximum matching N is
s > r. Then there exists an augmenting path with respect to M of length

52[! J+1.
s—r

Proof: By the previous Lemma N @ M contains 8 — r vertex-disjoint (and hence edge-disjoint) paths.
One of them must therefore contain at most |r/(s — r)| edges of M, and hence has a total length
bounded by 2|rf(s—7)] +1. 1

|

8.1. FUNDAMENTALS. 57

Lemma:

Let P be a shortest augmenting path with respect to M, and P’ an augmenting path with respect to
M @ P. Then

IP'| 2 |Pl+ (PP

Prool: Let N := M ® P ® P'. As therefore |[N| = |M] + 2, by the previous Lemma the difference
M @ N contains at least two vertex-disjoint (and hence edge-disjoint) augmenting paths, say Py and P;.
Now M@ N = P® P, and hence

IP @ P'| 2 [Pi] + IR 2 2|P)
because P was chosen as a shortest augmenting path.
As by definition |P @ P’} = |P| + |P'| — 2|P N P’|. we obtain
Pl 2 |Pl+2IPNP| 2 Pl + PN P,
which we wanted to prove. |

The combination of the previous lemmas now suggests the following scheme for an algorithm to find
a maximum matching:

start with matching M, = 0;
compute a scquence My, Py, My, Py,..., M;, P;,... where P; is a shortcst augmenting path with
respect 10 M;, and M1 = M; @ P;.

Of course we have, by the carlier lemmas, that |P,] < |Pi,.], but also
Lemma:
For all 7 and j such that |P;| = |P;|, the paths P; and P; are vertex-disjoint

Proof: Assume for contradiction that ¢ and j are a closest pair of indices such that { < j, |P:| = |P;),
and P; and P; arc not vertex-disjoint. As ¢ and j are closest, all /% with { < k < j are vertex-disjoint
from both P; and P;. Because of this, P; also is an augmenting path with respect to M, = M, @ P;
(because none of the P, with i < k < j touches any of the vertices in P;), which means that |P;] >
|Pi} + {P: 0\ P, and hence, as |Pi| = |P;}. that P;N P; = 0 and P; and P; are cdge-disjoint. But if P;
and P; had a vertex v in common they would also have in common the matched edge of M, incident
on v (note that every node of P; is incident to a matched edge in M, ,!) as all P, with1 < k- < 7 did
not affect v. Hence P; and P; are in fact vertex-disjoint, contradicting our assumption. I

Theorem:
Let s be the cardinality of a maximum 'malching. Then the scquence
\Poly [Py, - ..
contains at most 2| s*/2) + 1 distinct numbers.

Proof: Let r = |8 — +/3]. As by construction |M,| = r, we obtain by our estimate of the length of a
shortest augmenting path that - .

et s s
[P,lgzL_ls_ﬁJ +1<2 ¥ +1 < 2Ves]+1.

58 8. MAXIMUM MATCHINGS IN GRAPHS

Hence, if < r, then | is one of the odd numbers in {1,3,5,...,2|/s] + 1} which has cardinality
Vs +1,and |P,4i],...,|P.=1] contribute at most another s — r — 1 < |+/3] distinct numbers, yielding
a total bounded by 2|/s] +1. |

Hence we get the following -
Refined scheme for a maximum maiching algorithm:

M:=9
while there is an augmenting path with respect to M do
begin ‘
:= leng.n of a shortest augmenting path with respect to M
find a maximal (with respect to set inclusion) set {@;, ..., @,} of augmenting paths with respect to
M, all of length L and all mutually vertex-disjoint;
M:=MQe®...R0Q,

end.
Corollary:
 The loop of the above algorithm is executed at most O(IVI‘/ %) times.

Proof: This is an immediate consequence of the fact that the size of a maximum matching is bounded by
ogvi. 1
We also refer the reader to [HoK73}.

8.2. Maximum Matchings in Bipartitc Graphs.

We 17w implement the above maximum cardinality matching algorithm for bipariite graphs G =
(Vh, Vo, E) (ie, the node set of G is partitioned into two sets V; and V,, and all (undirected) edges
are between a node in V) and one in V;). Note that an augmenting graph in a bipartite graph always
connects & free node in V; to a free node in V5.

W' . first start a simultaneous BFS at all free nodes in V, which at every odd step proceeds along all
unmatched zdges which it has reached at its foremost level, and which at every even step proceeds from
a node by the (unique, if present at all) matched cdge incident to that node. This simultaneous BFS
detects the length of a shortest augmenting path when it reaches a freec node in V,, and at the same time
determines a subgraph of G' which contains all shortest augmenting paths (with respect to the current
matching M):

for all v € V, UV, do label|v) := 0,

=0, l:=1
co at stage ! of the simultancous BFS, the nodes in R (resp.. L below) are those nodes in V, (resp.,
V) visited for the first time by the BFS, and hence at a distance (via an alternating path) of [from a
frec node in V; oc;
for all frce nodes v € V; do

for all v—w € E do

begin
label{w] :== 1; R := RU{w}
end;
while 2 72 0 and R contains no frce node do
begin

L:=01l:=14+1;

7 AP S SN SN

8.3. MAXIMUM CARDINALITY MATCHING IN CENERAL GRAPIIS, 59

foralwe R, v—w € M do
if label[v] = 0 then begin L := LU{v}: label[v] := { end
co note that in this step we can never reach free nodes in V; because we are using only matched
edges from V;; hence if label[v] = 0, then v has not been visited by the search before oc;
=0 l:=1+1; '
forallve L,vy—weE—- M do
if label[w] = O then begin R := RU{w}; label|w] := ! end
end;
R := the set of free nodes in R;

If at the end of this routine the set R is empty then obviously no augmenting path exists, and the
matching M is maximum, Otherwise the subgraph given by all edges v—w with label(w] = label[v] + 1
contains all shortest augmenting paths as follows immediately from the properties of BFS. Furthermore,
as G is supposed to be connccted the above segment of the algorithm takes time O(|E|).

We now dctermine, by a rcpeated DFS in the subgraph determined above, a maximal set of vertex-

disjoint shortest augmenting paths. Note that their length is {. The DFS uses a stack with the obvious
operations on it.

stack := @; .
for all frce nodes v € V, do
begin

€0 we try to construct a shortest augmenting path starting from v and vertex-disjoint from all such
paths constructed before oc)

push(v);
while stack 3£ @ do
begin
w := top(stack);
if there is an edge w—w' with label[w’] = label[w] + 1 then
begin
push(w’);
if w’ € R then
begin
co a new shortest augmenting path has been found oc
print(stack); stack := @
end;
label[w’] = 0 co this marks w’ as visited by the DFS oc
end
else pop
end
end;

Obviously this algorithm produces 2 maximal set of vertex-disjoint augmenting paths of length [, and
the time it requires is again O(|[]). Together we have achieved an implementation which requires for
every phase described in the above scheme time linear in the number of edges of G. With the bound on
the number of such phases we hence obtain

Theorem:

There is an algorithm for thc maximum cardinality matching problem in bipartitc graphs which
requires time bounded by O(|V|'/*|E)).

cen e b ——m e

60 8. MAXIMUM MATCHINGS IN GRAPHS

8.3. Maximum Cardinality Matching in Genceral Graphs.

We use the same general approach as pointed out in section 8.1. for the maximum cardinality
matching problem in general graphs, i.e.. we try to design an algorithm consisting of phases where in
each phase a maximal sct of vertex-disjoint shortest augmenting paths is used to increase the size of the
matching.

We are here only going to outline the basic ideas of such an implementation, and refer to [MiV80]
for more details.

The algorithm performs a simultaneous BFS (starting at all nodes free under the current matching)
which, as in the bipartite case, alternates between unmatched and matched edges. Each time before a
new level is added to the BFS, the algorithm checks for bridges. A bridge is an cdge such that both
its endpoints have been reached by the BFS, and both in steps involving the same kind (matched or
unmatched) of edges. Also, if they were reached by matched edges, the bridge must be an unmatched
edge, and vice versa.

For every bridge, the algorithm then checks by backtracing whether there are, from the two endpoints
of the bridge, two vertex-disjoint alternating paths to free nodes. If such paths arc found then in fact a
shortest augmenting path has been found, and it is erased from the graph, together with all edges incident
to nodes on the path in order to avoid that any of its parts is visitcd by the BFS later on. The backtracing
is donc by running two DFS’s (onc from every endnode of the bridge) in parallel and in a way such that
the nodes furthest down in the DFS trees are at levels in the BFS trees differing by at most one.

If the two DFS’s fail to discover an augmenting path they actually discover a blossom, that is an odd
length cycle with a maximal number of matched edges in it which became closed by the bridge. Such
a blossom is shrunk to a pseudo-node by introducing path compression pointers from all its nodes to its
root which is the unique node in the cycle not incident to a matched edge also in the cycle. In this way,
edges in the blossom neced not be traversed any more in later searches for augmenting paths. Blossoms
can occur one within another. A blossom is reexpanded if an augmenting path is detected which contains
the pscudo-node belonging to it

A careful implementation of these concepts guarantees that in every phasc cach edge of G has to
be visited only a constant number of times, and also that the overhead for all operations is bounded by
O(| E]). For details sce [MiV80]. We obtain the following result:

Theorem:

There is an O(lVl'/ ?|E|) algorithm for the maximum cardinality matching probleni in general graphs.

$.4. Maximum Weight Matching Problems.

Another generalization of matching problems considers (undirccted and connected) graphs G =
(V, E) where every cdge is assigned a weight c(e) > 0. The weight ¢(M) of a maching M C E is

then defined to be
e(M):= Y cfe).
eEM

A mawching M is called a maximum weight matching if there is no matching M’ of (G,c) which has
weight ¢(M’) > ¢(M).

For the maximum weight matching problem there are no results known cquivalent to those presented
in scction 8.1. for the maximum cardinality problem. Instcad, the most cfficient algorithms known for this
problem usc the dual problem that arises when one formulates the maximum weight matching problein
as a linear optimization problem. This dual problem scrves to sclect a sequence of augmenting paths in
order 1o iteratively increment the weight of the matching. For more deuails see [Law76). We summarize:

e M- 3

o e e ey ey v > e i S A e = "

8.4. MAXIMUM WEIGHT MATCHING PROBLEMS. 61

Theorem:

(a) There is an algorithm for the maximum weight matching problem of time complexity 0(|V|').
(b) There is an algorithm for the maximum weight matching problem of complexity O({V' || E] log|V'|).

For the first of these algorithms, we refer to [Law76), for the second to [GaM81].

¢ PlasBiewe s e

Chapter 9

Maximum Flow in Networks

9.1. Flows and Cuts.

A network is a digraph G = (V, E) with no self-loops and parallel edges (anti-parallel edges are
permitted), and with two distinguished nodes, the source s and the sink t 7% s. In additition, every edge
e € E is assigned a nonnegative capacity c{e). A flow in G is a real function f from E such that
(i) for cvery cdge e € E its value is bounded by the capacity of the cdge: 0 < f(e) < ¢(e); and
(i) for every node v different from s and ¢, Kirchhoff's law is satisfied:

Y flg- > fle)=0

e=(v,w)EE e’ =(w,v)EE

By the total flow F = F(f) we mean the value of the above sum at the source s, i.c.

F= z fle)— Z J{e).

e=(s,w)EE ¢ =(w,s)EE

It should be clcar that this sum is the negative of the corresponding sum at the sink ¢.
A flow f in G is called maximon if F([) is maximum for all flows in G (with capacity c).

Definition:
A cut of the network G is a subset S of V such that s€ S and t ¢S.

For a cut S, let § denote the complement V — S of S, and let Eg 5 be the subset of cdges in E
from nodes in S to nodes in § (Eg 5 is defined analogously).

Lemma:

For cvery cut S and cvery flow f we have

Ffy= X fle- X fle).

€€k, 3

Proof: Notc that if we sum

Foe=" Y flo- X J(€)

e={v,w)cE o =(w,v)EE

S U UR UN

P R et

9.1. FLOWS AND CUTS. 63

over all v € § we obtain F, which cquals F(f) as all the other F, are zero by condition (ii) for flows.
However, if we rearrange the terms in the sum all thosc f(e) where both endpoints of e are in § cancel
because they appear exactly twice and with opposite sign, and we are left with the right hand side of the
equation claimed in the Lemma. |

If we set the capacity of a cut S to be

C(S) = Z c(e),

eEE, F

we immediately obtain that
F < C(S) foreverycutS.

This upper bound can in fact be achieved as stated in the following
Theorem (Ford, Fulkerr i 1956):
max{F(f); / flow in G} = min{C(S); S cut in G}
The proof of this Theorem will folléw from the next lemma (also see [FoF56]).

Definition:

A sequence
= Yp—U1—VUs—...— VU (—

of edges v,_,—v; without node repetition is called an augmenting path to v, with respect to some flow
fifforalls, i =1,...,r, either

a) e= (v;_,,v) € E and c'(e) := ¢(e) — f(e) > 0, or

b) e=(v,v.,) € E and c'(¢) := f(e) > 0.

An augmenting path (with respect to f) is an augmenting path to the sink &.

It is clear that if there is an augmenting path P with respect to a flow f then f can be increased
along this path by § = min{c(c); e edge in P} in the following way: If an edge e in P is directed from
s to t its flow value is incrcased by &, and if e is dirccted the other way, 1t is decreased by the same
amount. This change clearly maintains Kirchhoff’s law for all nodes different from the source and sink,

and it increases the total flow by 4.
Lemma:
A flow is maximum iff it has no augmenting path,

Proof: It only remains to show the sufficiency of the condition in the Lemnma. Hence suppose that a
flow [has no augmenting path, and ict S be the set of nodes v reachable from the source s by an
augmenting path to v. Then s € S as the empty path is an augmenting path (to s), and ¢t & S as there
is no augmenting path in G with respect to f. The definition of S alse implics that for cvery edge
e € Eg 3, the flow f(e) equals the capacity c(e) (because otherwise the endpoint of e would also be a
member of), and, for the same reason, that for every edge e € g ¢, the flow f(e] is zero. Therefore
we obtain, by the previous Lemma, that in fact F(f) = C(S) from which we can conclude that f is
maximum as, by the above Corollary, F(f') < C(S) for every flow f'. 1

Note that as a corollary we have also obtaincd a proof of the Min-Cut-Max-Flow Theorem stated

carlier.
‘The results presented so far suggest to construct a maximum flow by starting with some flow satisfying

conditions (i) and (ii), and then trying to successively increase it along augmenting paths until such a path

m\d}}fl i

B e R

64 9. MAXIMUM FLOW IN NETWORKS

nc longer exists in which case the resulting flow is guaranteed to be maximum. This idca also underlies
the inital mcthod by Ford and Fulkerson to construct a maximum flow. But care has to taken in sclecting
the augmenting paths [Zah73). As a matter of fact, Ford and Fulkerson pointed out an example (with
irrational edge capacitics ¢(e)) for which the simple method (which consistently makes “bad” choices) fails
to terminate and even to converge towards the actual maximum flow. But also if the edge capacities are
all positive integers the edge selection is critical for the efficiency of the algorithm as demonstrated by the
following cxample. Let M be a (very) big positive integer such that the size of its binary representation
dominates the size of the whole network.

If we start in this example with a zero flow and sclect as augmenting paths alternatingly s—a—b—t
and s—b-—a—1 it takes the algorithm ©(M) augmentations to reach the maximum flow, and henc: a
running time exponential in the size of the input.

9.2. The Dinits Algorithm.

We now show how to overcome the difficulty indicated above by a method using so-called pre-flows.
Call an cdge v—w in the network (G, ¢) augmentable from v 1o w if
(a) e=(v,w) € E and f(e) < c(e), or if
(b) e=(w,v) € E and f(e) > 0.
The following algorithm divides the nctwork (G, ¢) which has some flow f defined on it, into disjoint
layers Vg, ..., V, C V using a BFS:
Vo:={8};: 1i:=0;
repeat
T := {v; there is an edge w—v augmentable from w to v with w € V; and v @U}j_, Vi};
1 =1+1; Vi=T
mtil T=0o0rteT;
if T = 0 then stop “flow maximum” else V; := {t};

The layered network G'(G, ¢, f) now consists of all the nodes in the V; (the final value of ¢ is called
the length of the network and denoted by /) and the edges in any of the E;, 7 = 1,...,! with

E;:= {v— w; vEV,_,, w €V, and v—w € L augmentable from v to w}.

Note that the direction of the edges in the II; may be different from the original direction in E. In
addition every edge e = (v, w) in the F; is assigned the capacity ¢’(e) which is the sum of the values
c(e’) — f(e') respectively f(e') over all cdges €' between v and w which are augmentable from v to w.

Once we have a nonzero flow f' in the layered network G'(G, ¢, f) it is clear how to augment the
flow J in (G, c): If the flow along an edge in the layered network is in the same direction as in G it is
added to f{e), and otherwisc subtracted (a little bit of care has (0 be excrcised if there are two antiparallel
edges between some nodes v and w in (G, ¢, f) which are both augmentable from v to w and have been
replaced by onc edge in the layered network).

9.2. THE DINITS ALGORITHM. 65

Definition:

A flow f’ in a layered network is maximal if every path from s to ¢ in the layered network contains
an edge e with f'(e) = c'(e).

We now propose to construct a maximum flow in a network (G, ¢) in phases which consist each of
the following steps:

start with flow f (initially the zero flow);

construct the layered network G’(G, ¢, f) together with the capacity ¢’;
find a maxima) flow f’ in the layered network;

augment f by f'.

As the layered network G'(G, ¢, f) contains all shortest augmenting paths with respect to f (some edges
may be reversed with respect to G) we obtain a similar situation as for the maximum capacity matching

problem.
Lemma:
The layered network of the k-th phase has length at least k.

Proof: The proof is by induction on k. For k = 1 it follows from the condition that the sink ¢ is different
from the source s. For the inductive step we note that, in the k-th phase, there can be no augmenting
paths of length < k — 1, and also that the maximal flow constructed in the k — 1-st phase saturates at
least one edge on each augmenting path of length & — 1. As all these paths appcared in the & — 1-st
phase, no augmenting path of length < k is left at the beginning of the k-th phase. But this implies that
the k-th layered network has length at least k, and completes the induction. I

Corollary: The number of phascs (as given in the above schematic algorithm) is bounded by |V/|.

In the following, we shall be concerned with exhibiting various efficient algorithms to construct
maximal flows in layered networks. Such flows are also called preflows.

Dinits’ Method:

The first solution is due to Dinits [Din70]. It constructs a maximal flow by an itcrated DFS from the
source-to the sink. Each successful scarch determines a new augmenting path, the value of the additional
flow is given by the minimal capacity of an edge on the path.

construct G'(G, ¢, f) and ¢;
for all edges ¢ in G' do f'le] := 0;
while there remains an edge from the source s do
hegin ‘
construct by a DFS a path P from s to ¢ and delete during this DFS all dcad-end edges
co an edge is a dead-end cdge if the DFS cannot proceed from its endpoint (7% t) because it has no
successors oc¢;
A := min{c'[e}; e edge in P};
for allee P do
begin
- J'le) = Lle) + B
if c’le] = A then delete e
end '
end.

66 9. MAXIMUM FLOW IN NETWORKS

Clcarly the algorithm produces a maximal flow because it saturates at lcast one edge on every path
from the source to the sink. The time requircment per phase is O(|V || E]) because between any two edge
deletions there are at most { steps where [is the length of the layered network, and of course | < |V].
Hence we conclude -

Theorem:

Dinits’ Algorithm constructs a maximum flow in an arbitrary network in time O(|V |?|E|).

9.3. The Malhotra-Pramodh Kumar-Maheshwari Algorithm.

More efficient algorithms for the maximum flow problem are also based on the above subdivision
into phascs and the construction of maximal preflows. But they don’t use augmenting paths. The first
such algorithm is due to Karzanov [Kar74]. We shall here, however, present another algorithm of the
same asymptotic complexity which is easier to describe [MPM78].

Given some preflow [’ in the layered network G', let us define the potential P(v) of some node » to
be the minimum of the sum of all remaining capacities ¢/(e) — f'(e) taken over all edges e leaving v, and
the same some over all edges entering into v. Clearly, /”(v) is the maximum amount by which the flow
through v can be increased, if we look just at v. - MPM algorithm can now be described as follows:

while P(s) and P(t) arc 3£ 0 do
begin
let v be some node with minimal P(v);
starting from v, push additional flow of P(v) units towards f, update the flow function accordingly,
and delete edges which become saturated;
in the same way, starting from v, pull additional flow of P{v, units from s;
update P; :
while there is v £ 8,t with P(v) = 0 do
begin
remove v and its incident edges; .
update P
end
end.

The pushing and pulling of additional flow is donc in a way such that at 2very node that gets touched
the edges are scanned in the order in which they appear on the adjacency list, and as much additional
flow is added as possible, as long as the supply lasts. In this way, at most one outgoing (resp., incoming)
edge receives nonzero additional flow without becoming saturated at the same time. Hence the time
bound for onc pass of the outer loop is

O(|V| + thc number of cdges getting saturated (and hence deleted)).

As in cvery such pass a node gets removed, we obtain a time bound of O(|E| + |V |*) per phase,

and hence the :

Theorem:

The MPM maximum flow algorithm has time complexity O(|V |3).

As we remarked alrcady carlier, the Karzanov algorithm [Kar74] has the same asymptotic complexity.,
A somewhat more efficient algorithm for the maximum flow problem which has time complexity
O(|VI*|E|'/?) is described in [Che?7]. Other efficient solutions can be found in [GaN79), [Shi78] (both

o

9.5. APFLICATIONS. . 67

of complexity O(|V || E|log?|V |)). and in [S1c80] (complexity O(|V||E]log|V'[)). These latter solutions '
make use of more elaborate data structurcs to find maximal preflows.

94. Extensions and gestrictions.

We'd like to shortly mention some variations of the basic maximum flow problem. For a more
detailed discussion we refer to [Eve79] and [Law76).

(a) In addition to the capacity function ¢ we may have another function & on the edges representing a
lower bound for the flow f through cach edge. In this case we would demand b(e) < f(e) < c(e)
for cvery edge e, and of course Kirchhoff's law as before for every node other than the source and
sink. Contrary to the situation of the basic maximum flow problem where the zero flow was a legal
flow, a legal flow might not exist at all in a network with arbitrary lower bounds. However, we can
reduce the test for the existence of (and the construction of) a legal flow to another maximum flow
problem with zero lower bounds and size proportional to the size of the original problem. Once we
have established a legal flow we may use any of the methods discussed above (with the appropriate
modifications in the definition of the capacity ¢’ of the edges in the layered nctwork) to construct a
maximum flow,

(b) Instead of looking for a maximum flow, wc might be mterested in a minimum flow. But clearly, as
F, = —F,, a minimum flow from s to ¢ is a maximum flow from ¢ to s.

(c) Often the capacities of the cdges in a network are either zero or one. Such a network (and we even
allow here parallel edges) is called a 0-1-network. Note that in a layered network coming from a
0-1-network, every edge on an augmenting path becomes saturated. Also note that a layered network
which allows a big preflow, intuitively has to be wide because every edge accomodates at most one
unit of flow. Using these properties, one can derive the following

Theorem:
For 0-1-networks, the Dinits algorithm has time complexity O(|E|*/*).

(d) A special case of 0-1-networks are those with no parallel edges (also called 0-1-networks of type 1).
For them, we obtain

Theorem:
For 0-1-nctworks of type 1, the Dinits algorithm has time complexity O{|V|*/?).

(¢) An even more restricted class of 0-1-networks are those where every node has either at most one
outgoing or at most one entcring edge. These networks are calied 0-1-networks of type 2. It is

possible for them to derive an even better upper bound:

Theorem:

For 0-1-nctworks of type 2, the Dinits algorithm has time complexity O(|V'|'/*|E|).

The basic idca for the proof is again a bound on the length of the corresponding layered networks.

9.5. Applications.

We finally statc some applications of the algorithms for the maximum flow problem to other problems.
Again we only list the results and refer for the details to [Eve79] and [Law76].

68

9. MAXIMUM FLOW IN NETWORKS

(a) The vertex-connectivity of a directed graph is the minimal number of nodes that has to be removed

(v)

©

(@)

from it such that there remain two vertices @ and b which are no longer connected by a path from a
to b. If there is an edge from every vertex to every other vertex, we set the cdge-connectivity to be
[VI—1 by default. An analogous definition is made for undirected graphs. The determination uf the
vertex-connectivity of (directed or undirected) graphs can be reduced to a maximum flow problem,
in which basically every node of the graph is split into two nodes for the network connected by an
edge with unit capacity. The algorithm then checks, for every pair (e, b) of nodes in the graph, the
flow from the node corresponding to @ to that corresponding to b in the network. As the network
is of type 2, this can be done in time O(|V|'/*|E]) for every pair, and hence in a total time of
O(|V|"’/ *|E|). However, a slightly better bound can be obtained if we observe that not all pairs of
nodes have to be checked. As a matter of fact it suffices to check k nodes against all others if by

then we have detected two nodes for which the removal of < k nodes is enough to separate them.
We then get the

Theorem: The vertex-connectivity of a (directed or undirected) graph can be determined in time
O(IVI'|EP).

If we are only interested if the vertex-connectivity is at least & for some given k, we can stop each
flow problem once the flow reaches k& units.

Theorem: It can be determined in time O(k3|E| + |V ||E|) (that is in time O(k|V||E]) if k =
O(lVll/ *)) whether a graph is k-vertex-connccted.

The edge-connectivity of (directed or undirecied) graphs is defined analogously to the vertex-
connectivity. However, the reduction to a maximum flow problem is herc completely trivial. Also,
we have to solve only |V| — 1 network flow problems. A further possibility is to run these network
flow problems in parallel, one augmenting path at a time, until one of the flows cannot be incrcased
any more. Thus we obtain

Theorem: The cdge-connectivity ¢ of a (directed or undirected) graph can be determined in time
@) O(IVI\E|min{|E|'/,|V[*/*}), or
(i) OfclVII£]).

As a final application, we mention the maximum cardinality matching problem in bipartite graphs.
The reduction to a maximum flow problem is straightforward, and we obtain, using Dinits’ algorithm,
the same bound as derived in scction 8.2., namely O(|V|'/?|E}).

Chapier 10

Problems

PROBLEM 1:
Give some cxamples of algorithms which you would not consider “combinatorial”.

PROBLEM 2:
Prove the following formulac for the function T defined by

T(n) =s’1‘(;%) +an®, ifn=m*>1,

T(1) =d

(wherea > 0, e > 0, s > 0, and m an integer > 2):

O(n?), if s < m*
T(n) = {O(n"log,, n), ifs=m*

O(n'oen*), if s > m*

(assume that 7'(n) == 0 for n not a power of m).
Give an explicit solution to the above recurrence (still assuming n = m?*).

PROBLEM 3: .
In a situation analogous to the one underlying the previous problem but where n is not necessarily
a power of m, onc might get a recurrence like

" P .
l(n)'=sl(|';r;])+an‘, ifn >1
T(1) =d.
Usually there are two approaches to this problem:
(1) cmbed a problem of size n into one of size »’ where n’ = mn'°®= " js the next larger power of m;

(2) cmbed a problem of sizc » into one of size n’ where n’ = [2]m is thc next larger multiple of m.
Compare these approaches and the bounds on the resulting complexitics!

(Hint: use the facts that
[____[n/m]] = [L] and [1‘—] <2+1)
P mp m m

70 10. PROBLEMS

PROBLEM 4:
When analyzing the Schonhage-Strassen algorithm for fast integer multiplication we arrive at a
recurrence relation for its time complexity 7' of the form

T(n) =27([n'/?)) + clogn, ifn >3
T(2) =T(1) = d.

Solve this recurrence using the techniques presented in class (assumc in light of Problem 3 that n is of
an appropriatc form).

PropLEM 5:
In this problem you are asked to consider the implementation details of binomial trees and queues.

(a) Describe an implementation and show how the operation of merging two binomial trees would be
done.

(b) Show how to delete the smallest clement in a sct represented by a binomial queuc using your
implementation in (a). Use the algorithm of merging binomial queues mentioned in class.

(Hint: use an cldest son, next brother representation)

PROBLEM 6:

Now we are intercsted in the operation of dcleting some arbitrary clement that we have a pointer
to. Modify your implementation of binomial qucues in Problem § so that it allows this and the other
operations to be done cfficiently. Your implementation should usc only two pointers per node. Describe
how the delete arbitrary operation is done.

ProsLEM 7:
Prove the Decomposition Lemma stated in class.

PROBLEM 8:
Analyse both time and space complexity of an algorithm for computing 22” on a RAM. Use both
the unit and logarithmic cost criterion.

PRrROBLEM §:

Describe how to modify the Paterson-Pippenger-Schanhage median algorithm presented in class so
that you obtain an algorithm for arbitrary selection (i.c., an algorithm for finding the ¢-th largest in an
n-clement set for any 7 with 1 < 1 < n), and determing its complexity.

Proprem 10:

Let (U, <) be a ttally ordered universe, and w(s) > 0 a weight for cvery s € (J. Describe an
cfficient algorithm bascd on the Blum-Floyd-Pratt-Rivest-Tarjan sclection algorithm presented in class,
which, for any given finite S C U and w > 0, determines the maximal (with respect to C) subset M
of smallest (with respect to <) elements of § such that

Z w(s) < w,

EM

and analyzc its complexity (in terms of number of comparisons).

w.a’umn -

U

10. PROBLEMS)

PROBLEM 11:]

Suppose you arc given &£ numbers f = 0 < #; < ... < #; < g4, = n + 1 and you want to
sclect simultancously the ¢, smallest, the 45, ..., 7, smallest clement of the n-clement sct S. Develop a
multiple selection algorithm which solves this problem using at most

k
O(nlogn — Z(i,urx — 1;)log(1;41 — 1;))

i=0

comparisons.

PROBLEM (2:

Consider the problem of finding the median of n clements on a computer with limited space.
Specifically, suppose that data clements are much bigger than other things, so that there is room (o store
[n/2] + 1 clements and a linear amount of other stuff that can not cncode data clements. Find an
algorithm subject to these constraints that finds the median while doing only lincarly many comparisons,
for the casc where n = 2% — 1,

(Hint: Use the solution to the previous problem with i; = 29 — | for j = 1,...,k - 2, and
tipk—2 = 7n—2' + 1, also for j = 1,...,k — 2, and apply it to the first [n/2] clements read into
memory. Then iteratively input as many clements as there is space left, and discard those which cannot
possibly be the median.)

PROBLEM 13:

Give in PASCAL-like notation an O(elog log n) time impicmcentation of the minimum spanning tree
algorithm MST?2 discussed in class. You may assumc that the vertices of the graph are represented by the
integers 1,...,n. The input data consist of an (unordered) list of triples (v, w, ¢(v, w)) which contains
every edge exactly once ((v, w) = (w, v)).

(Warning: You may not assume that arrays are initialized in a special way?!)

PROBLEM 14:

Develop a lincar time minimum spanning trec algorithm for planar graphs! (Planar graphs arc those
which can be drawn in the plane without cdges crossing one another.) Employ a similar sctting as in the
first phase of algorithm MS12 and make additional use of the following facts:

a) A planar graph with n nodes has at most 3n — 3 edges (no parallel edges are allowed; if n > 3 the

number of cdges is even bounded by 3n — 6).

b) If an edge in a planar graph is shrunk to a node the graph remains planar.

PrROBLEM 15:
Construct an cxample which shows that your approach in the previous problem docs not work for
arbitrary graphs with e == O(n) cdges.

PROBLEM 186: .

Prove an Q(mlogn) lower bound for the unweighted UNION-FIND algorithm which uscs path
compression, for a sequence of n UNION's and m > n (intermixed) FIND's,

(Hint: Remember the two different ways to look at binomial trees!)

PECPNENE SEIE Y

-~
ke

*
3
£

72 A 10. PROBIEMS

PronLEM 17:
Give, in a PASCAL-like Janguage, an implementation of the UNION-FIND operations with weighting

heuristic and path compression which uses only O(1) auxiliary space (this means that you cannot usc a
stack for intermediate storage of the FIND path; try instcad to store this FIND path in situ). Assume
that cach clement is represented as an clement of

type pair=reccord elt: integer; next: tpair end;

and that the pointer of the pair for the root of a trec points to a pair containing the size of the trec and
a nil-pointer.

PROBLEM 18:
Let (G, c) be a connected, undirccted graph with nonnegative edge weight c. Let C be a cycle in G,

and e an edge in C such that ¢(e) is maximal among all cdges in C.

a) Prove that there is a minimum spanning tree for (G, ¢) which does not contain e.

b) Prove that if ¢(e) is strictly larger than e(e’) for all other edges €' in C, no minimum spanning tree
for (G, c) contains e.

PROBLEM 19:

Let G be a connccted, undirected graph with » nodes and e cdges, and let T be a (rooted) spanning
trec for G. Design an algorithm of time complexity O(e(n)) which, for every edge {v,w} in G and not
in 7', determines the lowest common ancestor of v and w in T (the lowest comnon ancestor of v and w
is the node of 7' where the unigue paths from the root of 7' to v respectively w part).

(Hint: In a post-order scarch of 7" you hit cxactly twice a node incident to a non-tree edge of G.
The sccond time, the fowest common ancestor is on top of the nodes you have visited so far.)

PROBLEM 20:

Let (G, ¢) be a connected, undirected graph with nonnegative cdge weight ¢, and let T be a spanning
tree for G. Using the results of the two previous problems, describe an O(czn)) algorithm which checks
whether 7' is a mininum spanning tree for (G, c).

PROBLEM 21L:

Describe how to modify the algorithm reg_pat presented in class such as to find for every position j§
in text
a) the minimal ¢ such that tezt; ; € Lq;
b) the maximal ¢ such that text; ; € L,.

(Hint: Associatc in the simulation of the pattern automaton M, an appropriatc count with cvery
state.)

PrOBLEM 22:;

Supposec @ = a;a;...a, is a string. A substring of a is a string ¢ of the form ¢ = ay,4a,,...0;,,
where 0 < 1, < 13 < ... < 1, < 7+ L. That is, the letters of ¢ occur in a in the same order but not
necessarily consecutively. Find an O(|a||b]) algorithm that finds the longest string that is a substring of

both a and b.

ProisLEM 23:
(a) Find a lincar, off-linc algorithm that finds the icast common ancestor (1.CA) of nodes of a complete
binary tree. The least common ancestor of two nodcs is the nodc that is an ancestor of both nodes

10. PROBLEMS 73

and is a descendent of all such nodes. All nodes in a complete binary tree have zero or two children.
All of the Icaves of a complete binary tree arc at two adjacent levels. For an off-linc algorithm, the
trec and all querics arc available before any query must be answered. ‘The algorithm must answer ¢
querics about an n node tree in O(n + g) time. (Hint: Iu is possible to use radix sort to sort ¢ nodes
in O(n + a) time.)

(b) Extend your algorithm in (a) to work for balanced trees. A balanced n-node tree has depth O(log n).
(Hints: The algorithm should still be lincar, but the constant will depend on the constant in the
depth. Conceptually, extend the tree to make it complete.)

(c) [Extra credit] Consider the set of all union trees. ‘That is trees that arc created by the UNION
algorithm with the weighting heuristic and without path compression. Prove that any such tree can
be made into a balanced binary tree in lincar time.

(d) You arc to show that thc LLCA problem for gencral trees can be reduced to that for union trees.
Consider a general tree 7°. It has a corresponding union tree, U. ‘The nodes of U correspond to the
leaves of T. Consider an internal node, v of 7'. Suppose that atl of the sons of v correspond to sets
in U. 'Then modify U so that there is a sct that is the union of all of the sets that correspond to
sons of v. Make v correspond to the node representing this set,

(i) Show the scts corresponding to the sons of v are distinct. Therefore the procedurc above is well
defined.

(i1) Show that {/ can be computed from T in lincar time.

(iii) Supposc that a and b arc leaves of T' that correspond to A and B in U. Let C be the least
common ancestor of A and I3 in U. Show that U and T can be preprocessed in lincar time so that
the Icast common anccstor of a and b in T can be found in constant time, given C.

PROBLEM 24:

Prove the following charactcrization given in class:

A connected, uadirected graph is biconnected iff every pair of distinct edges lies on a common simple
cycle.

PROBLEM 25:
Prove that in a connccted undirected graph the articulation points connect the blocks in form of a
tree. .

PROBLEM 26:
Give a nonrecursive implementation (PASCAL-like) of the DFS routine (for directed and undirected,
not necessaiily connected graphs) using a LIFO qucue,

PROBLEM 27:

let G = (V,F) be an undirected graph. A set € C V is called a cligue iff any two distinct
v,w € C arc connccted by an cdge in /4. Let C be a clique, and £ a DFS-forest of G. Prove that
all w € C lic on one branch of a trec in I'. Do they occur contiguously on this branch? Justify your
answer,

PROBLEM 28:
A Eulerian circuit in a connected undirected graph G = (V, E) is a circuit which contains cach edge
of the graph exactly once,
(a) Prove that G has a Eulerian circuit iff cvery node has even degree (i.c.. an cven number of edges
incident upon it).

74 10. PROBLEMS

(b) Design an algorithm of complexity O(JE}) which determines a Eulerian circuit of G if there is one.

PROBLEM 29:
Give an example of a planar graph (without sclf-loops and parallel cdges) where every node has

degree at Icast 5.

ProprLEM 30:
(a) Give the formulas for a coordinate transformation from the surface of the spherc onto the plane

which transforms the plane drawing of a (finitc) graph on the sphere into a plane drawing in the
planc with a prespecified outer face,

(b) Give a meromorphic transformation of the (complex) planc (i.c., a transformation of the form
J(2) = ¥, 5 ma,2" for some integer m converging in some region of the planc) which achieves
the same task for a planc graph given in the plane. ’

PrOBLEM 31:
'The dual graph of a plane graph G is given by a node for cvery face of G and an edge conncecting

two nodes for every edge of G which is on the common boundary line of the two faces corresponding to
the nodcs.

(a) Prove that the dual of a plane graph is planar.

(b) Prove that the duat of the dual is isomorphic to the graph itsclf.

(¢) Provc that every plane graph has cither a node of degree < 2 or a face with at most § edges on its

boundary.,

PRrRO#LEM 32:
Discuss how to obtain (using the planarity testing algorithm presented in class) an adjacency list

representation of a planar graph G where for cach node the incident edges appear in the adjacency list in
the order given by their clockwise ordering in some planc drawing of (¢ (modulo the starting direction).

Prom.im 33:
a) Find an O(|V[|#]) algorithm to solve the singlc source shortest path problem if edges with negative

weights, but no negative weight cycles are allowed.
b) Mudify your algorithm so that it solves the single source shortest path problem or finds a ncgative

weight cycle given a graph with possibly negative edge weights.

PROBLEM 34:
tind a lincar time algorithm to 6-color a planar graph. A graph is n-colored if cvery node is assigned

onc of n colors and no two nodes connected by an cdge have the same color.

PronLEM 35:
a) Prove that any planar graph can be S-colored. (Hint: [f a vertex has degree five, contract it and two

of its neigbhors. Use without proof that this preserves planarity.)
b) Convert your proof into an algorithm to 5-color a planar graph. Analyze its complexity in terms of

|V|. the number of vertices in the graph,
¢) FKind a lincar time algorithm to S-color a planar graph. (Hint: Use without proof the fact that cvery
planar graph has a vertex of degree four or less or it has a vertex of degree five with four neighbors

all of degree at most 11.)

APty s GV Koo o . i

Y

10. PROBLEMS 4 75

PROBLEM 36:

Simulate the Hopcroft-Tarjan planarity testing algorithin on the following graph. There are 7 vertices
vy,...,v7. There arc 15 cdges. FEach vertex v; is connected to vy, for ¢ = 1,...,7 — m and
m = 1,2, 3. Show all phascs of the algorithm.

Problems for the Closed Book Iinal:

PROBLEM 37:
Investigating odd-even merging the following recurrence arises:

fi=2"~1—fi_y, fo=0.

What is the solution?

PRrROBLEM 38:
Give the position tree for the string aaasbaaabaabab$.

PROBLEM 39:
Prove that an undirected graph is biconnected if and only if for every triple a, b, ¢ of nodes there is
a simple path from a to ¢ through b.

PROBLEM 40:

(a) How would you have to define the capacity of a cut in a nctwork with (nonnegative) lower bounds
such that the Min-Cut Max-Flow Thcorem holds?

(b) Give a detailed proof of a “Min-Flow Max-Cut” thcorem (sce what function of a cut is maximum).

PRODBLEM 41:

Call the sum over the degrees of the free nodes with respect to some matching m the deficiency
d(M). Give an cfficient algorithm to find a matching with minimum deficicncy. You may describe a
reduction to some problem discussed in class. What is the complexity of the algorithm?

PROBLEM 42:

Give a program for a version of Dijkstra’s shortest path algorithm which, for some given node a, in
addition to all distances dis{a, b], also determines the minimal number of edges on a shortest path from
a to b, for every node b. Establish the correctness of your algorithm and its time complexity.

PROBLEM 43:

Let G = (V, E) be a digraph with a (nonnegative) distance function d on the cdges, and suppose
that we want to find, for some fixed a € V, the length of a second shortest path from a to b, for every
b€ V. (Such a sccond shortest path need not be simple, but of course it reaches its endnode just once!
It may also have the same length as a shortest path, we only require it to be different from some shortest
path and having minimal length among all such paths.)

(@) What is the length dis2|a] of a sccond shortest path from a to a?

(b) Supposc some shortest path from a to b € V contains just onc cdge. What is dis2(]?
(c) Give an algorithm to compute dis2[b] forall bg V.

(d) Determine the time complexity.

Chapter 11

References

[ADKT0JARLAZAROV, V.L., DINITS, E.A.,, KRONROD, M.A., FARADZEV, LA.: On Fconomical
Construction of the Transitive Closurc of a Directed Graph.
Sovict Math. Dokl 11 (1970), p. 1209-1210

[AHUZ4jAn0, AV, HoprcrOorT, LK., ULLMAN, J.D.: The Design and Analysis of Computer
Algorithms,
Addison-Wesley, Reading, Mass., 1974

[AYa75] YAO, A.C.: An O(|/2]loglog|V|) Algorithm for Finding Minimum Spanning Trecs.
Information Processing I.etters 4 (1975), p. 21-23

[BeW78] BEINEKE, L.W., WILSON, R.J. (¥Ds.): Sclected Topics in Graph Theory.
t.ondon-New York-San Francisco: Academic Press 1978

[BFM76]BLONIARZ, P.A., FISCHER, M.J., MEYER, A.R.: A Note on the Average Time to Compute
I'ransitive Closures.
MIT/1.CS/TM-76, Sept. 1976

[BFP73] BLUM, M., FLOYD, RW,, Pratt, VR, Rivest, R.L,, TARIAN, R.IZ.: Time Bounds
for Sclection.
JCSS 7 (1973), p. 448461

[BGH65IBERGE, C., GUOUILA-ITOURI, A.: Programming, Games, and Transportation Networks.
John Wiley, New York, N.Y., 1965

[Bro78] BiOWN, M.R.: Implementation and Analysis of Binomial Qucue Algorithms.
SIAM J. on Comput. 7 (1978), p. 298-319

[Car83] CARROLL, L.: Lawn Tennis Tournaments,
St. James's Garette (August 1, 1883), p. 5-6. Reprinted in: The Complete Works of Lewis
Carroll. New York Modern Library, 1947

[Che77] CnirKASSKY, B.: Efficient Algorithms for the Maximum Flow Problem.
Akad. Nauk USSR, CEMI, Mathematical Mcthods for the Solution of Economical Problems 7
(1977), p. 117-125

[CTE76) ChiErITON, D, TARIAN, R.15.: Finding Minimum Spanning T'rees.
SIAM J. Comput. 5 (1976), p. 724-742

[DijS9) DuksTRA, [5.W.: A Note on Two Problems in Connection with Graphs.
Numer. Math. 1 (1959), p. 269-271

[Din70] DiNntrs, E.A.: Algorithm for Solution of a Problem of Maximum Flow in a Network with
Power Fstimation,
Soviet Math. Dokl. 11 (1970), p. 1277-1280

'
i
i
t
!
'
!

11. REFERINCES ' 77

[Eve79] VN, S.: Graph Algorithms.
Potomac, MD: Computer Science Press, [nc. 1979
[EvK77] Bve, 1., KURKI-SUONIO, R.: On Computing the Transitive Closure of a Relation.
Acta Informatica 8 (1977), p. 303-314
[Flo62] FLOYD, R.W.: Algorithin 97: Shortest Path,
C.ACM 5 (1962), p. 345
[FIR75] FLoYD, R.W,, RivEisT, R.L.: Expected Time Bounds for Sclection.
Comm. ACM 18 (1975), p. 165-172
[FoF56} ForDp, L.R., FULKERSON, D.R.: Maximal Flow Through a Network.
Canad. J. Math. 8 (1956), p. 399404
[Fre76] FREDMAN, M.L.: New Bounds on the Complexity of the Shortest Path Problem.
SIAM 1. on Comput. 5 (1976), p. 83-89
[Gal79] GALIL, 7.: On lmproving the Worst Case Running Time of the Boyer-Moore String Matching
Algorithm.
CACM 22 (1979), p. 505-508
[GaM81]GALIL, Z., MICALY, S.: An O(|V]|E]log|V]) Algorithm for Maximum Weight Flow.
Privatc Commuinication
[GaN79} GALIL, 7, NAAMAD, A.: Network Flow and Generalized Path Compression.
Proc. 11th Aan. ACM STOC (1979), p. 13-26
{GaS81] GALIL, Z., SEIFERAS, J.: Time-spacc-optimal String Matching.
Proc. 13th Ann. ACM STOC (1981), p. 106-113
[GuO80} GuiBAs, L..J., ODLYZKO, A.M.: A New Proof of the Lincarity of the Boyer-Moore String
Scarching Algorithm,
SIAM J. Comput. 9, (1980), p. 672682
[Hald48] HALL, M.: Distinct Representatives of Subsets.
Bull. An:r. Math, Soc. 54 (1948), p. 922-926
[Har80] HARrEL, D.: A Lincar Tiine Algorithm for the Lowest Common Ancestors Problem.
Proc. 21st Ann. Symp. on FOCS (1980), p. 308-319
[HoK73) HorcrowrT, J.15., KAwe, R.M.: An n8/2 Algorithm for Maximum Matchings in Bipartite
Graphs.
SIAM J. on Comput. 2 (1973), p. 225-231
[HoT74) HopPCRrOFT, J., TARJAN, R.E.. Efficicnt Planarity Testing.
JLACM 21 (1974), p. 549-568
[Hya76) HYAFIL, L..: Bounds for Setection.
SIAM J. Comput, 5 (1976), p. 109-114
[Joh73] JOounNsoN, D.B.: Algorithms for Shortest Paths.
Ph.D. ‘Thesis, Dept. of Computer Science, Cornell University, Tthaca, N.Y., 1973, Also: Elficient
Algorithms for Shortest Paths in Sparse Networks. JLACM 24 (1977), p. 1-13
[Kar74] KARZANOV, A.V.: Detenmining the Maximal Flow in a Network by the Mcthod of Preflows.
Sovict Math, Dokl 15 (1974), p. 434437 ,
[KMP77IKNuUTH, D.E., MORRIS, J.H., PRATT, V.R.: Fast Pattcrn Matching in Strings.
SIAM J. Comput. 6 (1977), p. 323-350
[Knu76) KNurh, D.E.: Big Omicron and Big Omega and Big 'Theta.
ACM Sigact News 8, 2, p. 18
[Kru56] KirruskAt, J.13.: On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem,
Proc. Amer. Math, Soc. 7 (1956), p. 48-50

T —

78 11. REFERENCES

(Kur30] KurarTowski, K.: Sur le Probleme des Courbes Gauches en Topologie.
Fund Math. 15 (1930), p. 217-283
[Law76] LAwLER, 15.G.: Combinatorial Optimization: Networks and Matroids.
Holt, Rinchart and Winston, New York-San Francisco-I.ondon, 1976
[iu68]) L, C.L.: latroduction to Combinaterial Mathematics.
McGraw-Hill, New York, N.Y., 1968
{t.uc8d} Lukrker, G.8.: Some Techniques for Solving Recurrences.
ACM Computing Surveys 12, 4 (1980), p. 419-436
[MaR80I MaJdsTiR, M., RusEr, A.: Eficient On-line Construction and Corrcction of Postition
Trees.
SIAM J. Comput. 9 (1980), p. 785-807
[McC76] McCrEIGHET, 19.M.: A Space-cconomical Suffix T'ree Construction Algorithm,
J.ACM 23 (1976), p.262-272
[Mil60] ML NE-THOMSON, 1L.M.: The Calculus of Finite Differences.
Macmillan, London, 1960
[MiV80] MicALL, S., VAZIRANL, V.V.: An O(y/[V]|£]) Algorithn for Finding Maximum Matching
in General Graphs.
Proc. 2Ist Ann. Symp. on FOCS (1980), p. 17-27
[MPMTEMALHOTRA, V.M., PRAMODIT KUMAR, M., MAHESHWARI, S.: An O(|V]*} Algorithm
tfor Finding Maximum Flows in Nctworks.
Computer Science Program, Indian [nstitute of Technology, Kanpur 208016, India, 1978
[PEYT73) PrAatr, VLR, YAO, F.1°.: On Lower Bounds for Computing the i-th Largest Element.
Proc. 14th Ann. [EEL SWAT (1973), Towa City, lowa, p. 70-81
[Rei77] REINGOLD, E.M., NIEVERGELT, 1., DEO, N.: Combinatorial Algorithms: Theory and
Practice.
Prentice-Hall, Englewood Cliffs, N.J.,, 1977
[Rei78] Reasisn, Ao A Linecar Sclection Algorithm for Sets of Elements with Weights.,
Information Processing Letters 7 (1978), p. 159-162
[RinS8] RiornAN, J.: An Introduction to Combinatorial Analysis.
J. Wiley. New York, N.Y., 1958
[Rio68] RiorbAN, J.: Combinatorial Identities.
J. Wiley, New York, NUY., 1968
[Sch78] Scunonrnr, C.P.: An Algorithm for Transitive Closure with Linear ixpected Time.
SIAM J. on Comput. 7 (1978), p. 127-133
[Shi78] SuLoACH, Y.: An O(nllog® 1) Maximum-flow Algorithm.
STAN-CS-78-702, Department of Computer Science, Stanford University, Stanford, 1978
S1e80] SrEATOR, D.D.K: An O(nmlogin) Algorithm for Maximuin Network Flow,
Deparunent of Computer Science Report No. STAN-CS-80-831, Stanford University, Stanford,
Dec. 1980
[SPP76] SCHONHAGE, A., PATERSON, M., PIPPENGER, N.: Finding the Mcdian.
JCSS 13 (1976), p. 184199
frar7s] TarJAN, R Efficiency of a Good But Not Lincar Sct Union Algorithm.
JACM 22 (1975), p. 215-225
[Tar77] TARJIAN, R.E.: Reference Machines Require Non-Linear Time to Maintain Disjoint Sets.
Proc. 9th ACM STOC (1977), p. 18-29
[rar79] TarJIAN, RS Applications of Path Compression on Balanced Trecs.
JACM 26 (1979), p. 690-715

1. REFERENCUES 79

[Yud7] Turre, WL The Factorization of Linear Graphs,
J. London Math. Soc. 22 (1947), p. 107-111

{Vui78] VuinLiEMIN, J.o A Data Structure for Maanipulating Priority Queues.
Comm. ACM 21 (1978). p. 309-315

[War62] WAnRrsuALL, S.: A Iheorem on Boolecan Matrices.
JACM 9 (1962}, p. 11-12

[Wei73] Wi .nNiR, P.: Lincar Pattern Matching Algorithms.
Proc. 11EEE 14th Ann. SWA'T (1973), p. 1-11

[YARTT}YAO, A.C., Avis, D.M., RivisT, R.L.: An Q(n? logn)} Lower Bound to the Shortest Paths
Problem.
Proc. 9th ACM STOC (1977), p. 11-17

[Zah73} ZAabpeit, N.: More Pathological Examples for Network Flow Problems.
Math. Programming 5 (1973), p. 217-224

